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OPC Lattices and Congruence Heredity

John W. Snow

Abstract. We prove that if A is a finite algebra which satisfies a nontrivial idempotent
Mal’cev condition, and if ConA contains a copy of an order polynomially complete lattice
other than 2, M3, or Con(Z3

2), then ConA is not hereditary.

1. Introduction

A lattice L is order polynomially complete (OPC) if every order preserving op-
eration on L is a polynomial of L. The proof of Theorem 5.2 in [7] establishes the
following:

Theorem 1.1. Suppose that A is a finite algebra so that L = ConA is OPC.
Then every diagonal sublattice of Ln is the congruence lattice of an algebra on the
universe of An.

In [8], the ideas used to prove Theorem 1.1 were employed to prove the following:

Theorem 1.2. Let L be the lattice of equivalence relations on the set A = {0, 1, 2}.
Every 0-1 sublattice of Ln is a congruence lattice on An.

From this theorem, it followed that every finite lattice in the variety generated
by M3 is isomorphic to the congruence lattice of a finite algebra. This result led
Hegedűs and Pálfy in [2] to define the notions of congruence heredity and congruence
power-heredity. The congruence lattice L of a finite algebra A is hereditary if every
0-1 sublattice of L is the congruence lattice of an algebra with the same universe as
A. L is power-hereditary if every 0-1 sublattice of Ln is the congruence lattice of an
algebra with the same universe as An. A is congruence (power-)hereditary if ConA
is (power-)hereditary. In [2], Hegedűs and Pálfy characterized which finite Abelian
p-groups have (power-)hereditary congruence lattices. In [6], this author proved
that every representation of N5 as the congruence lattice of a finite algebra is power-
hereditary. In [4], Pálfy proved that the lattice M3 does not share this property
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by giving and example of a finite algebra whose congruence lattice is isomorphic
to M3 but is not power-hereditary. To date, there is no known congruence lattice
representation of M4 which is even hereditary.

Theorem 1.1 could be interpreted as saying that every OPC congruence lattice
is somewhat weakly power-hereditary. In contrast to this, we prove in this paper
that if A is a finite algebra in a variety which satisfies a nontrivial idempotent
Mal’cev condition and if ConA contains a copy of an OPC lattice other than the
two element lattice, M3, or Con(Z3

2), then ConA cannot be hereditary. In the
process, we give a characterization of congruence (power-)hereditary vector spaces.

2. Preliminaries

By a representation or a congruence representation of a finite lattice L we will
mean the congruence lattice ConA of a finite algebra A such that ConA ∼= L. A
primitive positive formula is a formula of the form ∃ ∧ (atomic). If Φ is a primitive
positive formula employing binary relation symbols r1, . . . , rn and if Φ has two free
variables, then Φ naturally induces an operation on the set of binary relations of
any set. If θ1, . . . , θn are binary relations on a set A, then we will use Φ(θ1, . . . , θn)
to represent the binary relation on A defined by interpreting each ri in Φ as θi. The
operation 〈θ1, . . . , θn〉 �→ Φ(θ1, . . . , θn) is order preserving, and when it is applied
to products of relations can be applied coordinate-wise. Closure under primitive
positive definitions characterizes those lattices of equivalence relations that are
congruence lattices.

Lemma 2.1. (Corollary 2.2 of [7]) Suppose L is a 0-1 lattice of equivalence relations
on a finite set A. There is an algebra A on A with ConA = L if and only if
every equivalence relation on A which can be defined from L by a primitive positive
formula is already in L.

We will assume from here on that every primitive positive formula only
contains binary relation symbols and has exactly two free variables. We
will be interpreting the relations in these formulas only as equivalence relations.
Suppose that Φ is any such primitive positive formula and that r1, . . . , rn are the
relations symbols in Φ (or are relations interpreted as the symbols in Φ). Let
x1, . . . , xm be the variables in Φ. By the graph of Φ(r1, . . . , rn) we will mean
the undirected graph G with vertices {x1, . . . , xm} so that for each occurrence of
ri(xj , xk) in Φ, there is an edge in G labelled by ri between xj and xk. A primitive
positive formula Φ will be called connected if the corresponding graph is connected.
If a primitive positive formula Φ is not connected, then its value is completely
determined by the component containing the free variables. Thus in Lemma 2.1,
it is sufficient to consider connected primitive positive formulas. In light
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of this, we will assume that all primitive positive formulas are connected.
This assumption of connectedness is something of a formality that can almost be
ignored in this paper. If the two free variables in a primitive positive formula
are not contained in the same component, then the formula can only define the
universal relation. The operations referred to in Lemmas 2.3 and 2.4 would then
be the constant 1. By assuming our formulas are connected, we avoid needing this
constant operation. The operations in Lemmas 2.3 and 2.4 can then be terms rather
than polynomials.

Among the constructions from [7] we will also need the following.

Lemma 2.2. (Lemma 3.2 of [7]) Suppose A is a finite algebra and α and β are
equivalence relations on A. There is an algebra A′ on the universe of A with

ConA′ = {x ∈ ConA : x ≤ α or x ≥ β}.
Congruence heredity and power-heredity are related to how well primitive posi-

tive definitions can be interpolated by lattice terms:

Lemma 2.3. (Lemma 2.3 of [5]) The congruence lattice of a finite algebra A is
hereditary if and only if for every primitive positive formula Φ(x1, . . . , xn) and for
all r1, . . . , rn ∈ ConA if Φ(r1, . . . , rn) is an equivalence relation, then there is a
lattice term T (x1, . . . , xn) so that T (r1, . . . , rn) = Φ(r1, . . . , rn).

Lemma 2.4. (Lemma 4.5 of [2]) The congruence lattice of a finite algebra A is
power-hereditary if and only if for every primitive positive formula Φ(x1, . . . , xn)
there is a lattice term T (x1, . . . , xn) so that if r1, . . . , rn ∈ ConA and Φ(r1, . . . , rn)
is an equivalence relation, then T (r1, . . . , rn) = Φ(r1, . . . , rn).

Suppose that A and B are finite algebras and f : ConA → ConB is any function.
We will say that f preserves primitive positive definitions if whenever Φ(x1, . . . , xn)
is a primitive positive formula and r1, . . . , rn ∈ ConA so that Φ(r1, . . . , rn) and
Φ(f(r1), . . . , f(rn)) are equivalence relations, then

f(Φ(r1, . . . , rn)) = Φ(f(r1), . . . , f(rn)).

Note that any such function must be a lattice homomorphism. We first observe
that such a function must also preserve congruence (power-)heredity.

Lemma 2.5. Suppose that A and B are finite algebras and that f : ConA → ConB
is a surjection which preserves primitive positive definitions. Then if ConA is
(power-)hereditary then ConB is also (power-)hereditary.

Proof. Suppose that ConA is hereditary. We will show that ConB is hereditary.
Let Φ be a primitive positive formula and s1, . . . , sn ∈ ConB with Φ(s1, . . . , sn)
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an equivalence relation. Find r1, . . . , rn ∈ ConA so that f(ri) = si for all i. Let
Φ′(x1, x2) be defined by Φ(x1, x2) ∧ Φ(x2, x1), and define Φ′′(x1, x2) by

∃y0, . . . , ym+1

[( m∧
i=0

Φ′(yi, yi+1)
) ∧ (y0 = x1) ∧ (ym+1 = x2)

]
where m = max(|A|, |B|). Then Φ′′(r1, . . . , rn) is an equivalence relation on A and

Φ′′(s1, . . . , sn) = Φ(s1, . . . , sn).

(Φ′′ is the equivalence relation closure of Φ on any set with m or fewer elements.)
Since Φ′′(r1, . . . , rn) is an equivalence relation and ConA is hereditary, then by 2.3
there is a lattice term T so that T (r1, . . . , rn) = Φ′′(r1, . . . , rn). Then

T (s1, . . . , sn) = T (f(r1), . . . , f(rn))

= f(T (r1, . . . , rn))

= f(Φ′′(r1, . . . , rn))

= Φ′′(f(r1), . . . , f(rn))

= Φ′′(s1, . . . , sn)

= Φ(s1, . . . , sn).

Thus ConB is hereditary by 2.3. The case for power-heredity is proven similarly. �

Suppose V is a variety with a set of basic operation symbols F , and suppose W
is any variety. W is said to interpret V if for every basic operation t of V there
is a W-term st so that for every algebra A ∈ W the algebra 〈A, {sA

t : t ∈ F}〉 is
a member of V. This relationship is denoted by V ≤ W. A variety V is finitely
presented if it has a finite set of basic operation symbols and is defined by a finite
set of equations. The variety V is idempotent if every basic operation t(x1, . . . , xn)
of V satisfies the equation t(x, . . . , x) ≈ x.

Suppose that V is a finitely presented variety and W is any variety. The assertion
that W interprets V is called a strong Mal’cev condition. Suppose that

· · · ≤ V3 ≤ V2 ≤ V1

are finitely presented varieties. The assertion that W interprets one of the Vi is
a Mal’cev condition. An idempotent Mal’cev condition is one in which all of the
defining varieties are idempotent. A nontrivial Mal’cev condition is one which is
not satisfied by the variety of sets. When we say that an algebra A satisfies a
Mal’cev condition, we mean that the variety generated by A satisfies the Mal’cev
condition.

We will need to refer to Z2 as a group, as a field, and as a vector space. To avoid
confusion, we will use F2 to represent the field. We will use Z2 to denote the group
and the vector space (over F2).
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3. A minimal amount of tame congruence theory

We will need a little tame congruence theory to establish our results. We outline
the essentials we need here. Any unproven results in this section are established in
[3]. The reader who is familiar with tame congruence theory should at least refer to
3.2, 3.4, 3.8, and 3.9, which show that the constructions of tame congruence theory
preserve congruence (power-)heredity.

Suppose that A is a finite algebra and U is any subset of A. By A|U we will
denote the algebra on U induced by A. This algebra has universe U . Its operations
are all polynomials of A under which U is closed.

A unary polynomial e of an algebra A is idempotent if the equality e(e(x)) = e(x)
holds for all x ∈ A. If e is an idempotent unary polynomial of A and U = e(A)
then every operation of A|U is of the form e ◦ f where f is a polynomial of A. For
any θ ∈ ConA, e(θ) = θ ∩ (U × U) and the map θ → e(θ) is a surjective lattice
homomorphism from ConA to ConA|U . This is Lemma 2.3 of [3]. We need a
slightly stronger version of this lemma:

Lemma 3.1. (Lemma 2.3 of [3]) Suppose that A is a finite algebra, e is an idem-
potent unary polynomial of A, and U = e(A). Then e induces a surjective lattice
homomorphism from ConA to ConA|U which preserves primitive positive defini-
tions.

Proof. That e induces a lattice surjection is proven in [3]. We need only prove that
this surjection preserves primitive positive definitions. Suppose Φ is the primitive
positive formula given by

〈x1, x2〉 ∈ Φ(s1, . . . , sn) ↔ ∃x3, . . . , xm

p∧
i=1

sji
(xki

, xli).

Let r1, . . . , rn ∈ ConA so that Φ(r1, . . . , rn) and Φ(e(r1), . . . , e(rn)) are both equiv-
alence relations. That Φ(e(r1), . . . , e(rn)) ⊆ e(Φ(r1, . . . , rn)) should be clear since
U ⊆ A, each e(ri) ⊆ ri, and e is idempotent.

Next, suppose that 〈u1, u2〉 ∈ e(Φ(r1, . . . , rn)). This means that there are
x1, . . . , xm ∈ A so that e(xi) = ui for i = 1, 2 and rji

(xki
, xli) for i = 1, . . . , p. For

i = 3, . . . ,m, let ui = e(xi). Then 〈uki
, uli〉 ∈ e(rji

) holds for i = 1, . . . , p. Thus
〈u1, u2〉 ∈ Φ(e(r1), . . . , e(rn)). This establishes the reverse inclusion and equal-
ity. �

Combining this with Lemma 2.5 immediately gives us the following:

Corollary 3.2. Suppose that A is a finite algebra and e is an idempotent unary
polynomial of A with U = e(A). If A is congruence (power-)hereditary, then so is
A|U .
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If θ is a congruence on an algebra A and U ⊆ A, then we will use θ|U to represent
θ ∩ (U × U). The following lemma comes from Lemma 2.4 of [3].

Lemma 3.3. (Lemma 2.4 of [3]) Suppose that A is a finite algebra and β ∈ ConA.
Let B be any congruence class of β and B = A|B. Then the map θ → θ|B is a
lattice homomorphism from the interval [0, β] in ConA onto ConB which preserves
primitive positive definitions.

Proof. Add operations to A to form an algebra A′ whose congruence lattice is all
congruences less than or equal to β along with the universal relation. (This is
possible by Lemma 2.2). Let b ∈ B be arbitrary. Define e : A → A by

e(x) =

{
x x ∈ B

b x �∈ B.

Then e preserves all of the congruences of A′, so we can assume that it was one
of the added operations. Also, e is idempotent and e(A) = B. The lemma now
follows from Lemma 3.1. �

Combining this with Lemma 2.5 immediately gives us the following:

Corollary 3.4. Suppose that A is a finite algebra and β ∈ ConA. Let B be any
congruence class of β. If A is congruence (power-)hereditary, then so is A|B.

Suppose that A is a finite algebra and α < β are congruences of A. Let UA(α, β)
be the set of all sets of the form f(A), where f is a unary polynomial of A and
f(β) �⊆ α. Let MA(α, β) be the set of minimal elements of UA(α, β). These will
be called the 〈α, β〉-minimal sets of A. If A ∈ MA(α, β), then A will be called
〈α, β〉-minimal. Any 〈0, 1〉-minimal algebra will be called minimal.

Suppose that L is a finite lattice. L is 0-1 simple if for every nonconstant lattice
homomorphism f : L → L′ and for x = 0, 1 the equality f−1(f(x)) = {x} holds. If
L is 0-1 simple and every strictly increasing meet endomorphism of L is constant,
then L is called tight. We only need to know that the two element lattice, the
lattices Mn, and the congruence lattices of finite vector spaces are tight.

In [9] Wille proved that a finite lattice L is OPC if and only if L is simple and
the only decreasing join endomorphisms are the identity and the constant 0. Since
the polynomial operations of a lattice are identical to the polynomial operations
of its dual (if viewed with the same universe), we can dualize this to get that a
finite lattice L is OPC if and only if L is simple and the only increasing meet
homomorphisms of L are the identity map and the constant 1. Since simplicity
implies 0-1 simplicity, we have the following:

Lemma 3.5. A finite lattice is tight and simple if and only if it is OPC.
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The following lemma extracts the information we will need from Lemmas 2.10,
2.11, and 2.13 of [3].

Lemma 3.6. Suppose that A is a finite algebra and that α < β ∈ ConA so that,
as a lattice, the interval [α, β] is tight.

(1) A is 〈α, β〉-minimal if and only if for every unary polynomial f of A, either
f is a permutation or f(β) ⊆ f(α).

(2) If U ∈ MA(α, β), then there is an idempotent polynomial e of A so that U =
e(A).

(3) If U ∈ MA(α, β), then A|U is 〈α|U , β|U 〉-minimal.

Suppose that A is a finite algebra and α < β ∈ ConA. By an 〈α, β〉-trace of
A, we mean an equivalence class of β|U which is not contained in an α-equivalence
class for some U ∈ MA(α, β).

Lemma 3.7. (Lemma 2.16 of [3]) Suppose that A is an 〈α, β〉-minimal algebra and
N is an 〈α, β〉-trace of A. Then A|N is 〈α|N , β|N 〉-minimal and (A|N )/(α|N ) is a
minimal algebra.

We will call the minimal algebra (A|N )/(α|N ) here the minimal algebra associ-
ated with the 〈α, β〉-trace N . We will establish a lemma which allows us to pass
congruence (power-)heredity all the way down to the minimal algebras associated
with traces. To do so, we need the following lemma.

Lemma 3.8. Suppose that N is a finite algebra and α ∈ ConN. If N is congruence
(power-)hereditary, then so is N/α.

Proof. Add operations to N to form an algebra N′ whose congruences are those of
N above α along with the identity relation. (This is possible by Lemma 2.2). Let
a1, . . . , am be representatives of the α-equivalence classes of N. Define e : N → N

by e(x) = ai, where xαai. Then e preserves all of the congruences of N′, so we
can assume that it was one of the added operations. Also, e is idempotent, so we
can apply Lemma 3.1 to conclude that restriction of ConN′ to U = e(N) preserves
primitive positive defitions. It follows, then, that ConN|U is (power-)hereditary.
However, the relational structures 〈N/α,Con(N/α)〉 and 〈U,Con(N|U )〉 are iso-
morphic, so Con(N/α) is also (power-)hereditary. �

Combining 3.2, 3.4, and 3.8 we now have the following:

Lemma 3.9. Suppose that A is a finite algebra and α < β are congruences on A
so that [α, β] is tight. If A is congruence (power-)hereditary, then every minimal
algebra associated with any 〈α, β〉-trace of A is also congruence (power-)hereditary.

This lemma indicates that the structure of congruence (power-)hereditary min-
imal algebras might be important in the study of (power-)hereditary congruence
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lattices. Corollary 4.11 of [3] characterizes minimal algebras up to their polynomi-
als. Two algebras A and B are polynomially equivalent if and only if they share
the same universe and polynomials.

Theorem 3.10. (See Chapter 4 of [3]) A finite algebra A is minimal if and only
if A is polynomially equivalent to one of the following:

(1) a G-set for some group G,
(2) a vector space,
(3) the two element Boolean algebra,
(4) the two element lattice,
(5) the two element semilattice.

This list of minimal algebras will allow us to specify what the minimal algebras
associated to traces of congruence hereditary algebras must look like.

Finally, we need to know how Mal’cev conditions relate to induced algebras on
traces.

Lemma 3.11. (Theorem 9.6 of [3]) For a finite algebra A, the following are equiv-
alent:

(1) No trace on any finite algebra in the variety generated by A is polynomially
equivalent to a G-set.

(2) The variety generated by A satisfies a nontrivial idempotent Mal’cev condition.

4. Representing OPC lattices

In this section, we prove that in the presence of an idempotent Mal’cev condition,
a copy of an OPC lattice other than a select few in the congruence lattice of an
algebra prevents congruence heredity.

Lemma 4.1. If a finite vector space V has dimension at least two and does not
satisfy x + x = 0, then V is not congruence hereditary (and hence not power-
hereditary).

Proof. This proof is almost identical to the proof of Example 5.1 of [2]. We can
assume that for some finite field F, V is Fn as an F-vector space with n ≥ 2. Define
the following four congruences on V:

〈a0, a1, . . . , an−1〉η0〈b0, b1, . . . , bn−1〉 ↔ a0 = b0

〈a0, a1, . . . , an−1〉η1〈b0, b1, . . . , bn−1〉 ↔ a1 = b1

〈a0, a1, . . . , an−1〉α〈b0, b1, . . . , bn−1〉 ↔ a0 − a1 = b0 − b1

〈a0, a1, . . . , an−1〉β〈b0, b1, . . . , bn−1〉 ↔ a0 + a1 = b0 + b1
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The congruences η0 ∧ η1, η0 ∨ η1, η0, η1, and α form a sublattice M of ConV
isomorphic to M3. The primitive positive

Φ(x0, x1) ↔ ∃x2, x3 (x0η0x2 ∧ x2η1x1 ∧ x0η1x3 ∧ x3η0x1 ∧ x2αx3)

employing only η0, η1, and α defines β. But if V does not satisfy x + x = 0, then
β �∈ M. Thus M is not closed under primitive positive definitions and is not a
congruence lattice. ConV is not hereditary. �

Lemma 4.2. Suppose that A is a finite congruence (power-)hereditary algebra
which satisfies a nontrivial idempotent Mal’cev condition. If ConA has a sublattice
M which is OPC, then there is a congruence (power-)hereditary vector space V of
characteristic 2 so that ConV ∼= M.

Proof. Suppose that ConA contains an OPC sublattice M and that ConA is
(power-)hereditary. If M has only two elements, this is trivial, so assume that
M has more than two elements. Denote the bottom and top elements of M by 0M

and 1M . A/0M satisfies the idempotent Mal’cev condition, has a copy of M in its
congruence lattice, and is congruence (power-)hereditary by 3.8, so we can assume
that 0M = 0A. Suppose that B is an equivalence class of 1M . Then A|B is congru-
ence (power-)hereditary by 3.4. Also, since B will be closed under any idempotent
operation of A, A|B will satisfy the same idempotent Mal’cev condition. Moreover,
if B1, B2, . . . , Bn are all of the equivalence classes of 1M , then the interval [0A, 1M ]
in ConA can be embedded in

∏n
i=1 ConA|Bi

via the map θ → 〈θ|B1 , θ|B2 , . . . , θ|Bn
〉

(as in the proof of Lemma 3.4 in [7]). This implies that for some i the restriction of
the equivalence relations in M to Bi is a lattice injection (by the simplicity of M).
Since Bi is an equivalence class of 1M , this injection must map 1M to 1Bi

. Also,
the identity relation 0M must map to 0Bi

. Thus some A|Bi
has a copy of M in its

congruence lattice whose least element is 0Bi
and whose greatest element is 1Bi

.
Furthermore, A|Bi

is congruence (power-)hereditary and satisfies a nontrivial idem-
potent Mal’cev condition. Replace A with this A|Bi

. Since ConA is hereditary,
we can add operations to A so that ConA = M without losing satisfaction of the
nontrivial idempotent Mal’cev condition.

We have an algebra A with ConA (power-)hereditary and OPC and so that A
satisfies a nontrivial idempotent Mal’cev condition. ConA is tight, so we can apply
the tame congruence theory outlined in Section 3. Let U be a 〈0A, 1A〉-minimal set.
We know the following about A|U :

(1) A|U is minimal by 3.6.
(2) ConA|U ∼= M by 3.6 and 3.1 since ConA is simple.
(3) A|U is not polynomially equivalent to a G-set by 3.11. (Note that A|U consists

of a single trace since U is a 〈0A, 1A〉-minimal set.)
(4) A|U is congruence (power-)hereditary by 3.2 and 3.6.
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Since A|U is minimal, it is (polynomially equivalent to) one of the types of algebras
listed in 3.10. Since ConA|U has more than two elements, A|U must have more
than two elements, so A|U is either a G-set or a vector space. We have noted that
since A satisfies a nontrivial idempotent Mal’cev condition, A|U cannot be a G-set
by 3.11. Thus A|U must be a vector space. Since ConA|U is (power-)hereditary,
A|U as a vector space must be of characteristic two by 4.1. �

If M in this proof is isomorphic to M4, then the vector space has dimension two
and characteristic two. Then, the vector space is isomorphic to F2 for some field F
with 2k elements for some k. However, the congruence lattice of this vector space is
M2k+1, so we would have a contradiction. Hence we have established the following:

Corollary 4.3. Suppose that A is a finite algebra which satisfies a nontrivial idem-
potent Mal’cev condition. If ConA has a sublattice isomorphic to M4, then A is
not congruence hereditary.

This fact will allow us to say what the vector spaces in Lemma 4.2 are:

Corollary 4.4. Suppose that A is a finite congruence (power-)hereditary algebra
which satisfies a nontrivial idempotent Mal’cev condition. If ConA has a sublattice
M which is OPC, then there is a congruence (power-)hereditary vector space V
over F2 so that ConV ∼= M.

Proof. There is a congruence (power-)hereditary vector space V of characteristic
two with ConV ∼= M by Lemma 4.2. If V is simple (so |M| = 2), then the corollary
is trivial. Suppose that V is not simple. For some finite field F and for some k ≥ 2,
V is isomorphic to Fk as an F-vector space. We prove that F must be F2. By
4.1, we know that F must be of characteristic two. This implies that |F| = 2n for
some n ≥ 1. Suppose by way of contradiction that n > 1. The ConFk contains
a copy of ConF2, which is isomorphic to M2n+1. Since n > 1, this means that
ConFk contains a copy of M4. By Corollary 4.3, this would mean that ConV
is not (power-)hereditary. This is a contradiction, so it must be that n = 1 and
|F| = 2. Thus, F ∼= F2. �

In [2], Hegedűs and Pálfy give the following complete characterization of con-
gruence (power-)hereditary Abelian p-groups:

Theorem 4.5. (Theorem 5.8 of [2]) Suppose that A is a finite Abelian p-group for
some prime p.

(1) ConA is hereditary if and only if either A is cyclic, or A = Z2 ×Z2k for some
k ≥ 1, or A = Z

3
2.

(2) ConA is power-hereditary if and only if either A is cyclic, or A = Z2 × Z2k

for some k ≥ 1.
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Suppose that V is a non-simple congruence (power-)hereditary vector space.
ConV is OPC, so Corollary 4.4 tells us that there is a congruence (power-)hereditary
vector space U over F2 with ConU ∼= ConV. This implies that V ∼= U (the
congruence lattice of a non-simple finite vector space dictates the dimension and
size of the vector space and hence determines the vector space up to isomorphism),
so V is a vector space over F2. Now, the congruences of V as a vector space over
F2 are identical to the congruences of the Abelian group reduct of V. Hence by
Theorem 4.5, V must be Z

2
2 or Z

3
2. On the other hand, if V is Z

2
2 or Z

3
2 treated as

a vector space, then the congruences of V are identical to the congruences of the
Abelian group reduct of V. Hence we have the following:

Theorem 4.6. Suppose that V is a finite vector space.

(1) V is congruence hereditary if and only if either V is simple or V is Z
2
2 or Z

3
2.

(2) V is congruence power-hereditary if and only if either V is simple or V is Z
2
2.

If ConA is (power-)hereditary and contains a sublattice M which is OPC, and
if A satisfies a nontrivial idempotent Mal’cev condition, then by Corollary 4.4 M
must be the congruence lattice of one of the vector spaces in Theorem 4.6. This
immediately gives the next theorem. The critical lattice Con(Z3

2) in the theorem
has seven atoms and seven coatoms, and every height two interval in the lattice is
isomorphic to M3.

Theorem 4.7. Suppose that A is a finite algebra satisfying a nontrivial idempotent
Mal’cev condition.

(1) If ConA contains a copy of an OPC lattice other than 2, M3, or Con(Z3
2),

then ConA is not hereditary.
(2) If ConA contains a copy of an OPC lattice other than 2 or M3, then ConA

is not power-hereditary.

5. Affine complete algebras

An algebra A is affine complete if every operation on the universe of A which
preserves every congruence of A is a polynomial operation of A.

Lemma 5.1. Suppose that A is a finite affine complete algebra and e is an idem-
potent unary polynomial of A with U = e(A). Then A|U is also affine complete.

Proof. Suppose that f is an n-ary operation on U which preserves the congruences
of A|U . Define g on A by g(x1, . . . , xn) = f(e(x1), . . . , e(xn)). Then g preserves
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the congruences of A (so it is a polynomial of A), and in U the equation f = e ◦ g

holds. This makes f a polynomial operation of A|U . �

The following corollary implies that information about affine complete G-sets
might be useful in addressing the question of which Mn are congruence lattices of
finite algebras.

Corollary 5.2. Suppose that n is a positive integer so that Mn is not the con-
gruence lattice of a finite vector space. If Mn is the congruence lattice of a finite
algebra, then for some group G, there is a finite affine complete G-set whose con-
gruence lattice is isomorphic to Mn.

Proof. Let A be a finite algebra with ConA ∼= Mn. By adding the necessary oper-
ations to A, we can assume that A is affine complete. Let U be any 〈0, 1〉-minimal
set of A. The algebra A|U is minimal and has a congruence lattice isomorphic
to Mn. It must be that A|U is polynomially equivalent to a G-set. By the the
previous lemma, this G-set is affine complete. �

Of course, Mn can be replaced here with any OPC lattice that is not the congru-
ence lattice of a vector space. In [1], it was proven that there exists a finite algebra
A with ConA distributive but so that there are no operations on the universe of
A compatible with the congruences of A which satisfy Jónsson’s equations for dis-
tributivity. Since the lattices Mn are modular, and since there are n for which Mn

is representable as a congruence lattice but not as the congruence lattice of a vector
space (such as M7), Corollary 5.2 gives the following:

Corollary 5.3. There exists a finite algebra A with a modular congruence lattice so
that there are no operations on the universe of A compatible with the congruences of
A which satisfy Gumm’s equations (or Day’s equations) for congruence modularity.
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