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Relations compatible with near unanimity operations

John W. Snow

In Celebration of the Sixtieth Birthday of Ralph N. McKenzie

Abstract. Given a system R of k-ary relations on a finite set A which are compatible
with a (k + 1)-ary near unanimity operation on A, we provide a characterization of when
R is the system of all k-ary subuniverses of an algebra A on A.

1. Introduction

A near unanimity operation is an operation T which satisfies the equation

T (x, x, . . . , x, y, x, . . . , x, x) ≈ x

for each location of the lone y. Baker and Pixley proved in [1] that if a variety V
has a (k + 1)-ary near unanimity term operation (k ≥ 2) then any subalgebra of
a product of finitely many algebras from V is determined uniquely by its projec-
tions to k coordinates. In [3], G. Bergman complemented the Baker-Pixley result
by characterizing the system of k-ary projections of a subalgebra of a product of
algebras in a variety with a (k + 1)-ary near unanimity term operation. In the case
where k = 2, this characterization is expressed in terms of relation composition,
converse, and intersection. In this paper, we will define a k-ary composition op-
eration on k-ary relations which we will use to give a similar charaterization for
k > 2.

Using the characterizations in [3], C. Bergman [2] has shown that if a finite
algebra A has a majority term operation (a ternary near unanimity operation)
then A is determined up to categorical equivalence by the behavior of subuniverses
of A2 under intersection, composition, and converse. Suppose that R is a set of
subsets of A2 for some finite set A so that R contains A2 and the binary diagonal
and is closed under intersection, composition, and converse. Further suppose that
the sets in R are closed under a majority operation on A. C. Bergman asks in [2] if
there is a algebra A on A so that R is the set of all subuniverses of A2. A positive
answer to this question was found independently by this author, L. Zadori, and
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others. In this paper, we provide an extension of this to relations compatible with
a near unanimity operation of any rank.

2. Compatible relations and functions

If A and X are sets, we will use AX to represent the set of all functions from
X to A. We will follow the tradition that if n is a positive integer, then n =
{0, 1, . . . , n − 1}. With this convention, x ∈ n will mean the same as 0 ≤ x < n.
For any positive integer n, elements of An will sometimes be written as functions
and other times as n-tuples. Hence, the ith coordinate of x ∈ An will sometimes be
written as xi and sometimes as x(i).

If n is a positive integer, then an n-ary relation on a set A is a subset of An. If
α is an n-ary relation on a set A and f is any operation on A, then α is compatible
with f if α is closed under the induced operation fAn

. If A is an algebra on A, then
α is compatible with A if α is compatible with all basic operations of A. If A is
any algebra and n is a positive integer, let Rn(A) be the set of all n-ary compatible
relations of A. Let R(A) =

⋃∞
n=1 Rn(A).

Let A, X , and Y be any sets. Suppose f : Y → X is any function. Define
Pf : AX → AY by Pf (g) = g ◦ f for any g ∈ AX . We will refer to Pf (g) as a combi-
nation of the coordinates of g and will call Pf a coordinate combination function.
If k > 0 and J ⊆ k with |J | = n, then the projection of Ak to the coordinates in
J is the function Pf where f : n → J is the unique increasing bijection. Coordi-
nate combination functions will be pervasive throughout our work here. We will
occasionally use the following properties (which the reader should verify).

Lemma 2.1. Suppose that A, X, Y , and Z are sets and f : X → Y and g : Y → Z.

(1) If f is injective, then Pf is surjective.
(2) If f is surjective, then Pf is injective.
(3) If f is bijective, then Pf is bijective and P−1

f = Pf−1 .
(4) Pf ◦ Pg = Pg◦f .
(5) If B ⊆ AZ , then P−1

g (P−1
f (B)) = P−1

g◦f (B).

First we note that coordinate combination functions can be used to characterize
which systems of relations on a finite set A are of the form R(A) for some algebra A
with universe A. There are a variety of similar characterizations. For example, such
systems are characterized by being closed under logical definitions using primitive
positive formulas [4, 6]. Also, these systems are exactly those which contain the
diagonal relations and are closed under intersections, projections, and products of
relations [4]. For similar references, the reader can see [5].
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Theorem 2.2. Suppose that R is a set of finitary relations on a finite set A. There
is an algebra A on A with R = R(A) if and only if these three conditions are met:

(1) A ∈ R.
(2) R is closed under intersections of relations of the same rank.
(3) R is closed under Pf and P−1

f for all positive integers n and m and all functions
f : n → m.

3. Near Unanimity Terms

Suppose that V is a variety having a (k + 1)-ary near unanimity term. Let
r > k, and let A0, . . . ,Ar−1 ∈ V . For each I ⊆ r with |I| = k, let SI be a
subalgebra of

∏
i∈I Ai. For any J ⊂ r with |J | > k, if there is a subalgebra S of∏

i∈J Ai so that the projection of S to the coordinates in I is precisely SI for every
I ⊆ J with |I| = k, then we will say that the system {SI : I ⊆ r and |I| = k} is
Bergman-consistent on J . G. Bergman [3] gives the following characterization
of Bergman-consistent systems. (Bergman calls these systems consistent. We call
them Bergman-consistent to avoid confusion with our own notion of consistent
below.)

Theorem 3.1 (G. Bergman [3]). Let k ≥ 2 and let V be a variety with a (k + 1)-
ary near unanimity term. Let A0,A2, . . . ,Ar−1 ∈ V (with r > k), and for every
subset I ⊆ r of cardinality k, let SI be a subalgebra of

∏
i∈I Ai. Then there exists a

subalgebra of
∏

i∈r Ai whose projection to the coordinates in each I with |I| = k is
SI (that is, the given system is Bergman-consistent on r) if and only if the system
{SI : I ⊆ r and |I| = k} is Bergman-consistent on every J ⊆ r with |J | = k + 1.

Bergman’s theorem has the following corollary when restriced to direct powers.

Corollary 3.2. Suppose that A is an algebra with a (k + 1)-ary near unanimity
term for some k ≥ 2. Let m > k and for each I ⊆ m with |I| = k let BI be
a subalgebra of AI . There is subalgebra C of Am so that for any I ⊆ m with
|I| = k the projection of C to the coordinates in I is BI if and only if the system
{BI : I ⊆ m and |I| = k} is Bergman-consistent on any J ⊆ m with |J | = k + 1.

Suppose that A is an algebra with a ternary near unanimity term. In [3],
Bergman gives a characterization in terms of relation composition and converse
for a set of binary compatible relations on A to be the set of all binary projections
of a subalgebra of AX . In this section, we develop a similar characterization using
combinations of coordinates and a k-ary composition operation. We then use this
to characterize when a set of k-ary relations on a finite set is the set of all k-ary
compatible relations of an algebra with a (k + 1)-ary near unanimity term.
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Suppose k ≥ 2. For any i ∈ k + 1, let ιki : k → k + 1 be the unique increasing
map whose range omits i. Usually, k will be understood, so we will write simply ιi
for ιki .

Let A be any set. If r0, . . . , rk−1 ⊆ Ak, define

ck(r0, . . . , rk−1) = Pιk

(
k−1⋂
i=0

P−1
ιi

(ri)

)
.

If ri is assumed to be the projection of a (k + 1)-ary relation B to all coordinates
other than i for all i = 0, . . . , k − 1, then ck(r0, . . . , rk−1) is a candidate for the
projection of B to the first k coordinates. Explicitly, ck(r0, . . . , rk−1) is the set{

〈x0, x1, x2, . . . , xk−1〉 : (∃xk) (〈x1, x2, x3, . . . , xk−1, xk〉 ∈ r0)&

(〈x0, x2, x3, . . . , xk−1, xk〉 ∈ r1)&

(〈x0, x1, x3, . . . , xk−1, xk〉 ∈ r2)& . . .&

(〈x0, x1, x2, . . . , xk−2, xk〉 ∈ rk−1)
}

.

In particular, c2(r0, r1) = r1 ◦ r∪0 . For any integers k < m, let Inj(k, m) be the set
of all injective functions from k to m.

Definition 3.3. Let A be a set and let m > k ≥ 2 be integers. Suppose that
R = {rf : f ∈ Inj(k, m)} is a set of subsets of Ak. We will say that R is (k, m)-
consistent if for all injective functions f : k → m, g : k → k, and h : k + 1 → m

Pg(rf ) = rf◦g and rh◦ιk
⊆ ck(rh◦ι0 , rh◦ι1 , . . . , rh◦ιk−1).

Usually, k and m will be understood, and we will simply say that R is consistent.
We will prove that in the presence of a (k + 1)-ary near unanimity term R =
{rf : f ∈ Inj(k, m)} is (k, m)-consistent if and only if there is an m-ary relation B

on A so that Pf (B) = rf for all injective f : k → m. We first approach (k, (k + 1))-
consistent systems.

Lemma 3.4. Suppose that A is a set and k ≥ 2. Let R = {rf : f ∈ Inj(k, k+1)} be
a consistent set of k-ary relations on A. Define B =

⋂{P−1
f (rf ) : f ∈ Inj(k, k+1)}.

Then for any injective f : k → k + 1, Pf (B) = rf .

Proof. To begin with, define C =
⋂k

i=0 P−1
ιi

(rιi). We will prove for all j ∈ k + 1
that Pιj (C) = rιj . Let j ∈ k + 1, and let g : k + 1 → k + 1 be given by

g(x) =

⎧⎨
⎩

x x < j

x + 1 j ≤ x < k

j x = k
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Then ιj = g ◦ ιk. Let x ∈ rιj . Then

x ∈ rιj = rg◦ιk
⊆ ck(rg◦ι0 , rg◦ι1 , . . . , rg◦ιk−1).

There is a y ∈ Ak+1 so that Pιk
(y) = x and Pιi(y) ∈ rg◦ιi for i = 0, 1, . . . , k − 1.

Let z = y ◦ g−1. Then Pg◦ιi(z) = Pιi(y) ∈ rg◦ιi for all i = 0, 1, . . . , k. Now, for
each i, the range of g ◦ ιi is the same as the range of ιg(i), so there is an injective
function hi : k → k with g ◦ ιi ◦ hi = ιg(i). We already know that Pg◦ιi(z) ∈ rg◦ιi

for all i. Applying Phi to both sides of this inclusion along with consistency now
gives Pιg(i)(z) ∈ rιg(i) for all i. This places z ∈ C. Since Pιj (z) = x, we have that
rιj ⊆ Pιj (C). The reverse inclusion is automatic from the definitions, so we have
equality. Consistency now gives that Pf (C) = rf for any injective f : k → k + 1.
This fact and the definitions of B and C imply that B = C. �

The following lemma is an easy extension of a result from [1].

Lemma 3.5 (Baker-Pixley [1]). Suppose that A is an algebra with a (k + 1)-ary
near unanimity term for some k ≥ 2. Let B and C be subalgebras of Am for some
m > k. Then B ⊆ C if and only if Pf (B) ⊆ Pf (C) for every injective f : k → m.

Lemma 3.6. Let m > k ≥ 2 be integers. Suppose that A is an algebra with a (k+1)-
ary near unanimity term operation. Let R = {rf : f ∈ Inj(k, m)} be a consistent
set of compatible k-ary relations on A. Define B =

⋂{P−1
f (rf ) : f ∈ Inj(k, m)}.

Then for every injective f : k → m, Pf (B) = rf .

Proof. For any I ⊂ m with |I| = k, let BI = rf where f : k → m is the unique
increasing function with range I. We will prove that the system of BI ’s is Bergman-
consistent on m. To do so, it suffices to prove that for every J ⊂ m with |J | = k+1,
the system of BI ’s with I ⊆ J is Bergman-consistent.

Suppose that J ⊆ m with |J | = k + 1. Let g : k + 1 → J be an increasing
bijection. For each injective f : k → k + 1, let sf = rg◦f . Then the family {sf :
f ∈ Inj(k, k + 1)} inherits consistency from the set of rf ’s. It follows from Lemma
3.4 that there is a subalgebra B of Ak+1 which projects onto each sf . This B
corresponds naturally to a subalgebra of AJ which projects onto each BI with
I ⊂ J and |I| = k. Thus, the system of BI ’s is Bergman-consistent on every
subset J of m with k + 1 elements. By Theorem 3.2, it now follows that there
is a subalgebra C of Am whose projection to each I ⊂ m with |I| = k is BI .
Consistency now implies that Pf (B) = rf for all injective f : k → m. Lemma 3.5
implies that C must be the B defined in the statement of the theorem. �

It is simple to prove that if B ⊆ Am then the set {Pf (B) : f ∈ Inj(k, m)} is
(k, m)-consistent. This and Lemmas 3.4, 3.5, and 3.6 now give us
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Theorem 3.7. Let m > k ≥ 2 be integers. Suppose that A is an algebra with a
(k+1)-ary near unanimity term operation. Let R = {rf : f ∈ Inj(k, m)} be a system
of k-ary compatible relations on A. R is (k, m)-consistent if and only if there is an
m-ary compatible relation B on A so that Pf (B) = rf for all injective f : : k → m.
Furthermore, if such a B exists, then B =

⋂{P−1
f (rf ) : f ∈ Inj(k, m)}.

We are now ready to give our characterization of systems of k-ary relations which
are precisely the systems of compatible k-ary relations on a finite algebra with a
(k + 1)-ary near unanimity operation.

Theorem 3.8. Suppose that A is any finite set and that k ≥ 2. Let R be a set of
subsets of Ak so that

(1) R is closed under ∩, ck, Pg and P−1
g for all g : k → k.

(2) R contains the k-ary diagonal subset and Ak.

If R is compatible with a (k + 1)-ary near unanimity operation T then there is an
algebra A on A with R = Rk(A).

Proof. Let S be the set of all relations on A of the form
⋂n

i=0 P−1
fi

(ri) where m is
a positive integer, each ri ∈ R, and each fi : k → m. Each of these relations is a
compatible relation on the algebra 〈A, T 〉.

Claim If S is an m-ary member of S and f : k → m, then Pf (S) ∈ R.
Proof of Claim: Let S ∈ S be m-ary. There are r0, . . . rn ∈ R and f0, . . . , fn : k →

m so that S =
⋂n

i=0 P−1
fi

(ri). Suppose first that m ≤ k. Let f : k → m. For each i,
let f̄i : k → k be the composition of fi followed by the inclusion of m in k. Define f̄

similarly. Then Pf (S) = Pf̄

(⋂n
i=0 P−1

f̄i
(ri)
)
, which is in R since R is closed under

intersection and the operations Pf̄ and P−1
f̄i

.
Next, suppose that m > k. For any f : k → m define Bf = {r ∈ R : Pf (S) ⊆ r}.

Bf is not empty since Ak ∈ R. Also, let qf =
⋂

Bf . Note that since R is
closed under intersections, qf ∈ R, Pf (S) ⊆ qf , and qf ∈ Bf . We will prove that
Pf (S) = qf . This will place Pf (S) ∈ R.

We first show that S =
⋂

f : k→m P−1
f (qf ). Since Pf (S) ⊆ qf for all f : k → m,

the forward inclusion is clear. From the definition of S, we know that ri ∈ Bfi

for each i, so qfi ⊆ ri. Suppose that x ∈ ⋂
f : k→m P−1

f (qf ). Then for each i,
Pfi(x) ∈ qfi ⊆ ri, so x ∈ S. Thus,

⋂
f : k→m P−1

f (qf ) ⊆ S also holds.
We next prove that {qf : f ∈ Inj(k, m)} is consistent and that the equality

Pg(qf ) = qf◦g holds for all g : k → k and for all f : k → m. It will follow then that
S =

⋂{P−1
f (qf ) : f ∈ Inj(k, m)}, and by Theorem 3.7 (since all of these relations

are compatible with T ) we will then have that Pf (S) = qf for any f : k → m.
Let g : k → k and f : k → m. We will show that Pg(qf ) = qf◦g. Let r =

P−1
g (qf◦g). We will establish that Pg(r) = qf◦g. Clearly Pg(r) ⊆ qf◦g so we only

need the reverse inclusion. Note that Pf◦g(S) ⊆ Pg(Ak) so that Pg(Ak) ∈ Bf◦g.
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This means that qf◦g ⊆ Pg(Ak). It follows that qf◦g ⊆ Pg(r). To see this, let
x ∈ qf◦g. Since qf◦g ⊆ Pg(Ak), there is some y ∈ Ak with Pg(y) = x. Since
Pg(y) = x ∈ qf◦g, we know that y ∈ P−1

g (qf◦g) = r. This places x ∈ Pg(r). We
have established that qf◦g ⊆ Pg(r) and hence that Pg(r) = qf◦g. We will now use
this to show that Pg(qf ) = qf◦g. Let x ∈ S. Then Pf◦g(x) ∈ qf◦g, so Pf (x) ∈
P−1

g (qf◦g) = r. This places r ∈ Bf so qf ⊆ r, and hence Pg(qf ) ⊆ Pg(r) = qf◦g.
Also, if x ∈ S, then Pf (x) ∈ qf , so Pf◦g(x) = Pg(Pf (x)) ∈ Pg(qf ). It follows that
Pg(qf ) ∈ Bf◦g, so qf◦g ⊆ Pg(qf ). This gives qf◦g = Pg(qf ).

Suppose now that g : k + 1 → m is any injective function. We must show that
qg◦ιk

⊆ ck(qg◦ι0 , . . . , qg◦ιk−1). To do so, we will show that ck(qg◦ι0 , . . . , qg◦ιk−1) ∈
Bg◦ιk

. Let x ∈ S. Then we already know that Pg◦ιi(x) ∈ qg◦ιi for all i. This means
that Pιi(Pg(x)) ∈ qg◦ιi for all i, so

Pg◦ιk
(x) = Pιk

(Pg(x)) ∈ ck(qg◦ι0 , . . . , qg◦ιk−1).

Since this is true for all x ∈ S, it follows that ck(qg◦ι0 , . . . , qg◦ιk−1) ∈ Bg◦ιk
as

desired. This completes the proof that {qf : f ∈ Inj(k, m)} is consistent. Since
the equality Pg(qf ) = qf◦g holds for all f : k → m and g : k → k, we can actually
conclude that S =

⋂{P−1
f (qf ) : f ∈ Inj(k, m)}. By consistency, it follows from

Theorem 3.7 that for any injective f : k → m, Pf (S) = qf ∈ R. If f : k → m is
not injective, then we can factor f as g ◦ h for some h : k → k and some injective
g : k → m. Then

Pf (S) = Pg◦h(S) = Ph(Pg(S)) = Ph(qg) = qg◦h = qf ∈ R.

This ends the proof of the claim. One consequence of the claim is that the k-ary
members of S are exactly the relations in R, for if S ∈ S is k-ary and f : k → k

is the identity function, then the claim tells us that S = Pf (S) is in S. We will
use Theorem 2.2 to prove that there is an algebra A on A with R(A) = S. First
of all, A ∈ S because A = P−1

f (δk) where δk is the k-ary diagonal and f is the
constant function from k to 1. It should be obvious from the definition that S is
closed under intersections.

Suppose that B ∈ S is m-ary and that f : n → m and g : m → l. We will show
that Pf (B) and P−1

g (B) are in S. There are r0, . . . , rt ∈ R and f0, . . . , ft : k → m

so that B =
⋂t

i=0 P−1
fi

(ri). Notice that

P−1
g (B) = P−1

g (
⋂t

i=0 P−1
fi

(ri))

=
⋂t

i=0 P−1
g (P−1

fi
(ri))

=
⋂t

i=0 P−1
g◦fi

(ri).

Hence, P−1
f (B) ∈ S by the definition of S.
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When considering Pf (B), there are two cases: either n > k or n ≤ k. Assume
first that n > k. Since all of these relations are compatible with a (k + 1)-ary near
unanimity operation, Theorem 3.7 tells us that

Pf (B) =
⋂

h∈Inj(k,n)

P−1
h (Ph(Pf (B))) =

⋂
h∈Inj(k,n)

P−1
h (Pf◦h(B)).

For any h : k → n, Pf◦h(B) is in R by the Claim. Hence Pf (B) ∈ S.
Next, assume that n ≤ k. Let ι : n → k be the inclusion function, and let

f ′ : k → n be any function so that f = f ′◦ι. Then Pf (B) = Pf ′◦ι(B) = Pι(Pf ′(B)).
It follows from the claim that Pf ′(B) ∈ R ⊆ S. Let D = Pf ′(B). We need only
show that Pι(D) ∈ S. Let h : k → n be any function so that if i < n, then h(i) = i.
We claim that Pι(D) = P−1

h (Ph(Pι(D))). The forward inclusion is obvious. Let
x ∈ P−1

h (Ph(Pι(D))). Then x ◦ h ∈ Ph(Pι(D)), so there is a y ∈ Pι(D) with
x ◦ h = y ◦ h. If i < n, then x(i) = x ◦ h(i) = y ◦ h(i) = y(i). Since x, y ∈ An, this
means that x = y ∈ Pι(D). This establishes the desired equality. We have

Pι(D) = P−1
h (Ph(Pι(D))) = P−1

h (Pι◦h(D)).

Since D ∈ R and R is closed under Pι◦h, this places Pι(D) ∈ S as desired and
completes the proof that Pf (B) ∈ S.

The relations in S satisfy the conditions of Theorem 2.2 so there is an algebra
A on A with R(A) = S. From the Claim we know that the k-ary relations in S
are precisely those in R. The theorem now follows. �

Theorem 3.8 gives us this corollary for the special case when k = 2.

Corollary 3.9. Suppose that R is a system of binary relations on a finite set A

which is closed under composition, converse and intersection and which contains
A2 and the binary diagonal δA. If the relations in R are compatible with a majority
operation on A, then there is an algebra A on A with R = R2(A).

Proof. We apply Theorm 3.8 with k = 2. We already know that R is closed under
intersection and contains A2 and the binary diagonal. Also, if r and s are binary
relations on A, then c2(r, s) = s ◦ r∪, so R is closed under c2 also. We need only
show that R is closed under Pg and P−1

g for any g : 2 → 2. Let g : 2 → 2 and
r ∈ R. We proceed by cases on g. If g is the identity function, then Pg(r) =
P−1

g (r) = r ∈ R. If g is the non-identity permutation, then Pg(r) = P−1
g (r) = r∪,

which is in R. If g is the constant 0 function, then Pg(r) = (r ◦ r∪) ∩ δA ∈ R and
P−1

g (r) = (r ∩ δA) ◦ A2 ∈ R. The case when g is constantly 1 is similar.
We have shown that R satisfies the conditions of Theorem 3.8, so there is an

algebra A on A with R = R2(A). �
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4. Problems

We close with a few problems. For any algebra A, let S2(A) be the algebra
〈R2(A), A2, δA,∩, ◦, ·∪〉. According to [2], if A is a finite algebra with a majority
operation, then A is determined up to categorical equivalence by the isomorphism
class of S2(A). Let V be the variety of algebras of the same type as S2-structures
(two constants, two binary operations, a unary operation), and let K be the class of
all algebras R in V for which there is a finite algebra A with a majority operation so
that R ∼= S2(A). Corollary 3.9 shows that K is closed under subalgebras. Moreover,
suppose that A and B are finite algebras with majority term operations and that
C is the nonindexed product of A and B (the universe of C is A × B, and the
operations of C are all operations T on A × B so that in the first coordinate T

is a term operation of A and in the second T is a term operation of B). Then
S2(C) ∼= S2(A) × S2(B). It follows that K is also closed under finite products.
This motivates the following problems.

Problem 4.1. Is K closed under homomorphic images?

Problem 4.2. Find a set of quasi-identities Σ (or identites if the answer to 4.1 is
yes) characterizing the quasivariety (variety) generated by K.

More generally:

Problem 4.3. Which S2-structures are isomorphic to S2(A) for a (finite) algebra
A with a majority term operation (or for an A whose only basic operation is a
majority operation).

Corollary 3.9 assumes that R is closed under a majority operation from the
beginning. This leads naturally to:

Problem 4.4. Give conditions (preferably in terms of composition and converse)
under which a set of binary relations on a finite set are compatible with a majority
operation on the set.

Our next problem was posed by Kalle Kaarli. It essentially asks if the condition
of finiteness is necessary in Corollary 3.9. Finiteness is imposed on us in Theorem
3.8 by our application of Theorem 2.2. Theorem 2.2 can easily be extended to
infinite algebras; however, this infinite version requires the consideration of infinite
direct powers. Theorem 3.2 can be extended to infinite algebras if closure under
certain infinitary operations is assumed [3]. So an extension of Theorem 3.8 seems
reasonable under these additional closure conditions. The author is interested in
solving this problem without these additional assumptions.

Problem 4.5. Suppose that A is an infinite set and R is an algebraic closure
system on A2 closed under composition and converse and containing the binary



288 J. W. Snow Algebra univers.

diagonal. If the relations in R are compatible with a majority operation on A, is
there an algebra A with universe A so that R = R2(A)?
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