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Maltsev conditions and relations on algebras

J. W. Snow

Abstract. We show that every sentence preserved by products in a purely relational first order language corresponds
to a Maltsev condition on subalgebras of direct powers. Moreover, we establish that this correspondence captures
all strong Maltsev conditions whose defining equations do not involve compositions. We then demonstrate how a
broader version of the correspondence is sufficient to capture all Maltsev conditions when we restrict our attention
to locally finite varieties.

1. Introduction

In 1954, A. I. Maltsev [10] proved that a variety has permuting congruences if and only
if it has a ternary termp satisfying the identities

p(x, y, y) ≈ x andp(y, y, x) ≈ x.

This was the first such discovered connection between a congruence property of a variety
and the equations satisfied by the variety. In 1967, B. Jónsson [8] showed that congruence
distributivity of a variety was also equivalent to the existence of particular terms of the
variety satisfying certain equations. A similar characterization of congruence modularity
was given by A. Day [2] in 1969. These discoveries have inspired a new way of classifying
varieties according to properties of congruences on their algebras and according to existence
conditions satisfied by their terms. They also have given powerful tools for the investigation
of congruence distributive and congruence modular varieties. These “existence conditions”
on terms are called Maltsev conditions. Since the discoveries of Maltsev, Jónsson, and Day,
a number of Maltsev conditions have been found. While many of these involve congruences,
some do not. For example the property that every two subalgebras of any algebra in a variety
have non-empty intersection is equivalent to a Maltsev condition. Also, the requirement
that a variety contains no two-element algebras is a Maltsev condition.

SupposeL is any purely relational first order language. We think of the relation symbols
of L as being interpreted by compatible relations on algebras. We show that every sentence
in L which is preserved by products corresponds naturally to a Maltsev condition equivalent

Presented by H. Peter Gumm.
Received November 6, 1998; accepted in final form July 8, 1999.
1991Mathematics Subject Classification: 08B05, 08A30.
Key words and phrases: Maltsev conditions, first order logic, locally finite variety.

299
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to a condition on subalgebras of direct powers. Moreover, we also show that any strong
Maltsev condition (to be defined) given by linear equations is equivalent in this manner to
a sentence in some purely relational first order language.

2. Preliminaries

To begin with, we use the notion of interpretability to make the idea of a Maltsev condition
rigorous. SupposeV is a variety with a set of basic operation symbolsF , and supposeW is
any variety.W is said tointerpret V (orV is interpretable inW-or there is an interpretation
of V in W) if and only if for every basic operationt of V there is aW-termst so that for
every algebraA ∈ W the algebra〈A, {sA

t : t ∈ F }〉 is a member ofV. This relationship is
denoted byV ≤ W. It is equivalent to the condition that there be a mapping from CloV to
CloW which preserves ranks and compositions.

We pause for a moment to address nullary operations. If a varietyV has a nullary constant
c, then it also has a unary constantf (x) = c which mimics the nullary constant. LetV ′
be the variety with all but the nullary operations ofV. ThenV ′ ≤ V, but V 6≤ V ′ since
V ′ has no nullary operations. This distinction is somewhat confusing sinceV andV ′ are
essentiallythe same. To avoid this confusion, we will follow [4] and assume thatalgebras
have no nullary operations.

A class ofK of varieties is astrong Maltsev class(or is defined by astrong Maltsev
condition) if and only if there is a finitely presented varietyV so thatK is precisely the class
of all varietiesW for which V ≤ W. If there is an infinite sequence of finitely presented
varieties. . . ≤ V3 ≤ V2 ≤ V1 so thatK is the class of all varietiesW for which Vi ≤ W
for somei, thenK is aMaltsev class(K is defined by aMaltsev condition). Finally, if K
is the intersection of countably many Maltsev classes, thenK is aweak Maltsev class(K
is defined by aweak Maltsev condition).

Thenonindexed productof any collection{Ai : i ∈ I } of algebras (denoted⊗i∈I Ai)
is an algebra with universe

∏
i∈I Ai . If ti is ann-ary term ofAi for eachi ∈ I , then

⊗i∈I Ai has ann-ary operationt given byt (x1, . . . , xn)(i) = ti (x1(i), . . . , xn(i)). All such
operations make up the basic operations of⊗i∈I Ai . The nonindexed product of a collection
of varieties{Vi : i ∈ I } is the variety generated by all⊗i∈I Ai whereAi ∈ Vi . It is easy to
see that ifA1 andA2 are algebras then any subalgebra ofA1⊗A2 is the nonindexed product
of a subalgebra ofA1 and a subalgebra ofA2. Similarly, any congruence ofA1 ⊗ A2 is the
product of a congruence fromA1 and one fromA2. It is also not difficult to see that finite
nonindexed products commute with direct products. From these facts, it follows that ifV
andW are varieties, thenA ∈ V ⊗ W if and only if there are algebrasB ∈ V andC ∈ W
so thatA ∼= B ⊗ C.

In [17], W. Taylor proves that a number of properties are equivalent to Maltsev condi-
tions. His major tool is a characterization of Maltsev conditions equivalent to the following
theorem. Our statement of the theorem is taken from [9].
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THEOREM 2.1. (W. Taylor[17], W. Neumann[13]) A classK of varieties is a Maltsev
class if and only if the following hold:

1. Every variety in which some member ofK has an interpretation belongs toK.
2. K is closed under finite non-indexed products.
3. Every member ofK is contained in a finitely based variety that also belongs toK.

3. Maltsev conditions and first order logic

SupposeL is a first order language with relation symbols{ri : i ∈ I } where eachri has
rankσi . If V is any variety, letL(V) be the class of allL-structures〈A, {rA

i : i ∈ I }〉 so that
there is an algebraA in V with universeA andrA

i is a subuniverse ofAσi for eachi ∈ I .
If A is an algebra of typeτ andrA

i is a subuniverse ofAσi for eachi ∈ I , we will call the
structure〈A, {rA

i : i ∈ I }〉 a (τ ∪ L)-structure. When there is no danger of confusion, we
will omit superscripts on our relation and operation symbols.

We are ready for our first theorem:

THEOREM 3.1. SupposeL is a purely relational first order language andσ is a sentence
in L preserved by products. The class

{V : L(V) |= σ }
is a Maltsev class.

Proof. Since we are only concerned with the relation symbols inσ , we can assumeL has
finitely many relation symbolsr1, . . . , rn of rankσ1, . . . , σn respectively. LetK be the class
of varieties defined in the theorem. We show thatK satisfies the conditions of Theorem 2.1.
ThatK satisfies the first condition is easy. The second condition follows quickly from the
fact that for any varietiesV andW every member ofL(V ⊗W) is isomorphic to a product of
a member ofL(V) and a member ofL(W). The third condition requires a little more work.

Suppose thatV ∈ K is a variety of typeτ . If t is aτ -term andri is a relation symbol
from L, then we can write a formulaε in the language of(τ ∪ L)-structures so that any
(τ ∪ L)-structure〈A, rA

1 , . . . , rA
n 〉 modelsε if and only if rA

i is preserved bytA. Let 1

be the collection of all such formulas for eachτ -term t and eachi = 1, . . . , n. Suppose
that〈A, r1, . . . , rn〉 is a(τ ∪ L)-structure. If〈A, r1, . . . , rn〉 |= Id(V) ∪ 1 thenA ∈ V and
ri ∈ SubAσi for eachi. Therefore, theL-structure〈A, r1, . . . , rn〉 modelsσ , and hence the
(τ ∪ L)-structure〈A, r1, . . . , rn〉 also modelsσ . Thus we see Id(V) ∪ 1 ` σ . We can find
a finite subset0 ⊆ Id(V) so that0 ∪ 1 ` σ . LetW be the variety of typeτ defined by0.
V is contained inW, andW is finitely based. It is also the case thatW ∈ K. For if A ∈ W
andri ∈ SubAσi for eachi, then〈A, r1, . . . , rn〉 |= 0 ∪ 1 and so〈A, r1, . . . , rn〉 |= σ .
Hence〈A, r1, . . . , rn〉 |= σ . This shows thatK satisfies (3) of Theorem 2.1 and completes
the proof thatK is a Maltsev class. ¨
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We offer two applications of this theorem. Equations for the first example were given
by W. Taylor in [16].

THEOREM 3.2. (W. Taylor[16]) The class of all varieties which contain no two-element
algebras is a Maltsev class.

Proof. This class is defined in the manner of Theorem 3.1 by the following implication
which is in every first order language and which is obviously preserved under products:

[∃x1, x2(¬(x1 ≈ x2))] −→ [∃x1, x2, x3(¬(x1 ≈ x2)
∧

¬(x1 ≈ x3)
∧

¬(x2 ≈ x3))]

¨

An algebra hasregular congruences if and only if every congruence of the algebra is
completely and uniquely determined by any equivalence class. A variety is regular if every
member of the variety has regular congruences. In [19] H. A. Thurston proved that a variety
V is regular if and only if the only congruence on any algebra inV which has a singleton
congruence class is the identity relation. Using this fact it is simple to show:

THEOREM 3.3. (R. Wille[20], G. Grätzer[6], B. Cśakány[1]) The class of all varieties
with regular congruences is a Maltsev class.

Proof. LetL be the first order language with one binary relation symbolr, and let con(r)
be the sentence inL which holds if and only ifr is an equivalence relation. The property
“If r is an equivalence relation then it has a singleton class if and only if it is the identity
relation” is preserved under products and is defined by this sentence inL:

con(r) −→ [(∃a∀b(r(a, b) −→ (a ≈ b))) −→ (∀a, b(r(a, b) −→ (a ≈ b)))]

¨

4. Strong Maltsev classes

An obvious question to ask is which Maltsev classes can be described in this manner.
We give a partial solution to this problem. We show that Theorem 3.1 is powerful enough to
capture any strong Maltsev class corresponding to a variety which has a finite presentation
consisting of only linear equations (i.e. equations not involving compositions). We call
such Maltsev classeslinear (strong) Maltsev classes.

THEOREM 4.1. Every linear strong Maltsev class is defined by a sentence in a first
order language with binary relation symbols of the form

∀ x ∃ y


∧

i




∧

j

ri(aj , bj )


 −→ ri(ci, di)




 (1)
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where all of the a’s and b’s are x’s. Moreover, every sentence of this form defines a linear
strong Maltsev class.

Proof. Suppose that a varietyV has a finite linear presentation. We can assume for some
n thatV has a presentation〈f1, . . . , fm,

∑〉 in which everyfi is n-ary and every equation
in
∑

involves only variables selected fromx1, . . . , xn. List the members of
∑

as:∑
= {fji

(xki,1, . . . , xki,n
) ≈ fj ′

i
(xk′

i,1
, . . . , xk′

i,n
) : 1 ≤ i ≤ N}⋃

{fhi
(xli,1, . . . , xli,n ) ≈ xli,pi

: 1 ≤ i ≤ M}.
Let L be the first order language with 2N +M binary relation symbolsr1, . . . , r2N+M , and
let ε be this sentence inL:

∀x1, . . . , xn∃F1, . . . , Fm, y1, . . . , yN

N∧
i=1

[((
n∧

t=1

ri(xki,t
, xt )

)
−→ ri(yi, Fji

)

)
∧ (2)

((
n∧

t=1

rN+i (xk′
i,t

, xt )

)
−→ rN+i (yi, Fj ′

i
)

)]
∧ (3)

M∧
i=1

[(
n∧

t=1

r2N+i (xli,t , xt )

)
−→ r2N+i (xli,pi

, Fhi
)

]
. (4)

We claim that a varietyW interpretsV if and only if L(W) |= ε. Suppose first that
W interpretsV. ThenW has termsf1, . . . , fn modeling

∑
. Suppose thatA ∈ W and

x1, . . . , xn ∈ A. For i = 1, . . . , n, let Fi = f A
i (x1, . . . , xn) and let

yi = f A
ji

(xki,1, . . . , xki,n
) = f A

j ′
i
(xk′

i,1
, . . . , xk′

i,n
).

If r is any subuniverse ofA2 so that〈xki,1, x1〉, . . . , 〈xki,n
, xn〉 ∈ r, then

〈yi, Fji
〉 = f A2

ji
(〈xki,1, x1〉, . . . , 〈xki,n

, xn〉) ∈ r.

Also, if 〈xk′
i,1

, x1〉, . . . , 〈xk′
i,n

, xn〉 ∈ r, thenr also contains

〈yi, Fj ′
i
〉 = f A2

j ′
i

(〈xk′
i,1

, x1〉, . . . , 〈xk′
i,n

, xn〉).

Thus the implications in (2) and (3) hold. The argument that (4) holds is identical, so we
see thatL(W) |= ε.

Suppose thatL(W) |= ε. LetA be the free algebra inW generated by{x1, . . . , xn}. Sup-
pose i ∈ {1, . . . , N}. Let ri be the subuniverse ofA2 generated by{〈xki,1, x1〉, . . . ,
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〈xki,n
, xn〉} and letrN+i be the subuniverse ofA2 generated by{〈xk′

i,1
, x1〉, . . . , 〈xk′

i,n
, xn〉}.

By ε, there are termsf1, . . . , fm of W so thatf A
i (x1, . . . , xn) = Fi for i = 1, . . . , m (The

elements ofA are precisely terms applied to(x1, . . . , xn)). By (2) and (3), there is ayi so
that〈yi, Fji

〉 ∈ ri and〈yi, Fj ′
i
〉 ∈ rN+i , so there is a termg of W so that

gA(x1, . . . , xn) = Fij = FA
ji

(x1, . . . , xn) and g(xki,1, . . . , xki,n
) = yi.

SinceA is freely generated byx1, . . . , xn the varietyW must satisfyfji
(x̄) ∼= g(x̄). Thus

f A
ji

(xki,1, . . . , xki,n
) = yi . Similarly we can showf a

j ′
i

(xk′
i,1

, . . . , xk′
i,n

) = yi . Again, sinceA

is freely generated byx1, . . . , xn, it follows thatfji
(xki,1, . . . , xki,n

) ≈ fj ′
i
(xk′

i,1
, . . . , xk′

i,n
)

holds inW. A similar argument using (4) shows thatf1, . . . , fm model all of the necessary
identities of the formfhi

(xli,1, . . . , xli,n ) ≈ xli,pi
. Thusf1, . . . , fm model

∑
in W, so

V ≤ W.
We now show that every sentence of the form (1) defines a linear strong Maltsev class.

Any sentence of this form can be expressed in this manner:

∀x1, . . . , xn∃y1, . . . , ym

N1∧
i=1




 Mi∧

j=1

ri(xki,j
, xk′

i,j
)


 −→ ri(yai

, ya′
i
)




∧
N2∧

i=N1+1




 Mi∧

j=1

ri(xki,j
, xk′

i,j
)


 −→ ri(xbi

, xb′
i
)




∧
N3∧

i=N2+1




 Mi∧

j=1

ri(xki,j
, xk′

i,j
)


 −→ ri(xci

, yc′
i
)




∧
N4∧

i=N3+1




 Mi∧

j=1

ri(xki,j
, xk′

i,j
)


 −→ ri(ydi

, xd ′
i
)


 .

Let L be the first order language withN4 binary relation symbolsr1, . . . , rN4, and letε be
this sentence inL. For eachi = 1, . . . , N4, let fi be anMi-ary operation symbol. Define

0 = {fi(xki,1, . . . , xki,Mi
) ≈ xbi

: N1 < i ≤ N2}⋃
{fi(xk′

i,1
, . . . , xk′

i,Mi

) ≈ xb′
i

: N1 < i ≤ N2}⋃
{fi(xki,1, . . . , xki,Mi

) ≈ xci
: N2 < i ≤ N3}⋃

{fi(xk′
i,1

, . . . , xk′
i,Mi

) ≈ xd ′
i

: N3 < i ≤ N4}
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and

11 = {fi(xki,1, . . . , xki,Mi
) ≈ yai

: 1 ≤ i ≤ N1}⋃
{fi(xk′

i,1
, . . . , xk′

i,Mi

) ≈ ya′
i

: 1 ≤ i ≤ N1}⋃
{fi(xk′

i,1
, . . . , xk′

i,Mi

) ≈ yc′
i

: N2 < i ≤ N3}⋃
{fi(xki,1, . . . , xki,Mi

) ≈ ydi
: N3 < i ≤ N4}.

Next, let1 be the collection of all identitiesfi(x1) ≈ fj (x2) where there is ayl so that
bothfi(x1) ≈ yl andfi(x2) ≈ yl are in11. Finally, letV be the variety with presentation
〈f1, . . . , fN4, 0 ∪1〉. A proof similar to the one for the first half of the theorem now shows
that any varietyW interpretsV if and only if L(W) |= ε. ¨

It should be noted that the varietyV defined in the second half of this proof is often
trivial. For example, if an identity

fi(xki,1, . . . , xki,Mi
) ≈ xbi

is included in0 wherexbi
is not included in{xki,1, . . . , xki,Mi

}, thenV is trivial.

5. Locally finite varieties

A variety V is locally finite if and only if for all A ∈ V and for allX ⊆ A, if X is
finite then so is the subalgebra it generates. In [7], the authors discuss Maltsev conditions
restricted to the class of locally finite varieties. Throughout this sectioin, letL be the first
order language with one relation symbol of every finite rank. We show that for any strong
Maltsev classK, there is a theory0 in the languageL so that ifV is a locally finite variety,
thenV ∈ K if and only if L(V) |= 0.

For the sake of convenience, we will call a strong Maltsev class corresponding to a
finitely presented variety defined using onlyn-ary operation symbols and onlyn variables
ann-ary strong Maltsev class. It is not hard to see that every strong Maltsev class can
be assumed to ben-ary for somen. We call the strong Maltsev condition associated with
ann-ary strong Maltsev class ann-ary strong Maltsev condition. Ann-ary strong Maltsev
condition, then, is an assertion that there existn-ary terms in a variety which satisfy certain
equations inn variables.

LEMMA 5.1. Suppose that8 is ann-ary strong Maltsev condition andm > 1. LetM
be the first order language with onemn-ary relation symbolr. There is a sentenceσ8,m in
M so that ifA is any algebra, then〈A, r〉 |= σ for all r ∈ SubAmn

if and only ifA has
terms modeling8 or |A| 6= m.
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Proof. Suppose that8 is ann-ary strong Maltsev condition. LetPm be the sentence
which holds in anyM-structureM if and only if |M | = m. For i = 1, . . . , n, let pi ∈
{x1, . . . , xm}mn

be the projection to thei-th coordinate. LetF be the collection of all sets
of n-ary operations on{x1, . . . , xm} satisfying the conditions of8, and letσ8,m be this
sentence inL:

Pm −→

∀x1, . . . , xm




 ∧

i 6=j≤m

¬(xi ≈ xj )




−→


(

n∧
i=1

r(pi)

)
−→

∨
T ∈F


∧

f ∈T

r(f )








 .

Suppose thatA is anm element algebra and〈A, r〉 |= σ8,m for all r in SubAmn
. List the

elements ofA asx1, . . . , xm, and letr = ClonA (which is in SubAmn
). Then¬(xi ≈ xj )

holds for eachi 6= j and r(pi) holds for eachi = 1, . . . , n. From σ8,m it follows
that r must contain one of the sets of operations onA satisfying8. ThusA has terms
modeling8.

On the other hand, suppose thatA is anm element algebra with a setS of terms satisfying
8. Suppose thatr ∈ SubAmn

. We show that〈A, r〉 |= σ8,m. Let {x1, . . . , xm} ⊆ A be
distinct. Then{x1, . . . , xm} is all of A andS ∈ F . If r contains all of the projection
operations, thenr contains ClonA and hence contains all ofS. SinceS ∈ F , this shows
〈A, r〉 |= σ8,m. ¨

For everym, the languageM of this lemma is contained inL, so we can assume that
eachσ8,m is a sentence inL. If V is locally finite and we insist thatL(V) models each
of σ8,2,σ8,3, . . . , then sinceFV (n) is finite, we know that this free algebra satisfies8.
Hence, all ofV must satisfy8. On the other hand, if a varietyV satisfies8, then every
finite algebra in the variety must satisfy8. ThusL(V) must satisfy all of theσ8,k. If we
let 0 = σ8,2, σ8,3, . . . then we have:

THEOREM 5.2. For any strong Maltsev condition8, there is a theory0 in L so that
any locally finite varietyV satisfies8 if and only ifL(V) |= 0.

The languageL is useful in describing all interpretations between locally finite varieties.
The interpretability of one locally finite variety into another can always be described as a
containment between classes ofL structures.

LEMMA 5.3. Suppose thatV is a finitely presented variety and thatW is locally finite.
ThenV ≤ W if and only ifL(W) ⊆ L(V).



Vol. 42, 1999 Maltsev conditions and relations on algebras 307

Proof. The forward implication is obvious. Suppose thatL(W) is contained inL(V).
We can assume thatV has a presentation〈∑, F 〉 in which every operation symbol inF
is n-ary and every equation in

∑
involves at mostn variables. LetA = FW (n). Since

W is locally finite,A is finite. Letm = |A|n and considerr = ClonA ∈ SubAm. Since
L(W) ⊆ L(V), we have that〈A, r〉 ∈ L(V), so there is an algebraA′ on A in V so
that r ∈ Sub(A′)m. Sincer must contain the projection operations, ClonA′ ⊆ r. Since
ClonA′ ⊆ r = ClonA, for eachf ∈ F there is a termf̂ of W so thatf A′ = f̂ A. Then
{f̂ A : f ∈ F } models

∑
in A. SinceA = FW (n), these terms model

∑
on all ofW. This

givesV ≤ W as desired. ¨

We would like to eliminate the requirement thatV be finitely presented in this lemma.
In order to do this, we need the following lemma. A topological proof of this lemma is
given in [12].

LEMMA 5.4. For any varietiesV andW, if W is locally finite thenV ≤ W if and only
if V ′ ≤ W for all finitely presentedV ′ ≤ V. ¤

Using this we can show:

THEOREM 5.5. Suppose thatV and W are varieties andW is locally finite. Then
V ≤ W if and only ifL(W) ⊆ L(V).

Proof. The forward implication is again trivial. Suppose thatL(W) ⊆ L(V). If V ′ ≤
V is finitely presented, thenL(W) ⊆ L(V) ⊆ L(V ′). SinceV ′ is finitely presented,
Lemma 5.3, impliesV ′ ≤ W. Because this holds for all finitely presentedV ′ ≤ V, we have
V ≤ W by the previous lemma. ¨

6. Closing remarks

Theorem 3.1 allows us to look at the types of properties that are equivalent to Maltsev
conditions in a clearer light. Essentially, anything that can be said about subuniverses
of powers of algebras in a “nice” way corresponds to a Maltsev condition-where “nice”
means first order and preserved by finite products. The ideas herein pose numerous ques-
tions. We state some of them here. We have begun to address the first problem-which
(strong or weak) Maltsev conditions can be defined by sentences (or theories) in first
order languages in the manner of Theorem 3.1? Some sentences in purely relational first
order languages actually define strong Maltsev classes. Is there a method for determin-
ing whether a given sentence preserved by products defines a strong Maltsev class or a
Maltsev class?

A. Pixley [14] and R. Wille [20] give algorithms for calculating the equations for (weak)
Maltsev conditions equivalent to congruence identities. A similar algorithm for the types
of sentences we are considering should prove quite useful.
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In [3] it is shown that there are lattice identities which do not imply modularity but which
when satisfied by all of the congruence lattices of a variety imply that every congruence
lattice in the variety is modular. For sentencesσ andε in a purely relational first order
languageL, it would be interesting to investigate the implication

(L(V) |= σ) −→ (L(V) |= ε).

Finally, we would like to recall one of the supreme open problems in the area of Maltsev
conditions - is every congruence identity (including joins) equivalent to a Maltsev condition
(rather than merely a weak Maltsev condition)?
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[12] McKenzie, R. andŚwierczkowski, S., Non-covering in the interpretability lattice of equational theories,

Algebra univers.30 (1993), 157–170.
[13] Neumann, W. D., On mal’cev conditions, J. Austral. Math. Soc.17 (1974), 376–384.
[14] Pixley, A. F., Local malcev conditions, Canad. Math. Bull.15 (1972), 559–568.
[15] Snow, J. W., Relations on algebras and varieties as categories, Dissertation, Vanderbilt University, 1998.
[16] Taylor, W., Varieties without doubleton algebras, Notices Amer. Math. Soc.19 (1972), 753.
[17] Taylor, W., Characterizing mal’cev conditions, Algebra univers.3 (1973), 351–397.



Vol. 42, 1999 Maltsev conditions and relations on algebras 309

[18] Taylor, W., Varieties obeying homotopy laws, Canad. J. Math.29 (1977), 498–527.
[19] Thurston, H. A., Derived operations and congruences, Proc. London Math. Soc.8 (1958), 127–134.
[20] Wille, R., Kongruenzklassengeometrien, Springer-Verlag, New York, 1970. Lecture Notes in Mathematics,

vol. 113.

Department of Mathematics
Schreiner College
Kerrville, TX 78020
U.S.A.
e-mail: jsnow@schreiner.edu


