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Almost distributive sublattices and congruence heredity

John W. Snow

Abstract. A congruence lattice L of an algebra A is hereditary if every 0-1 sublattice of

L is the congruence lattice of an algebra on A. Suppose that L is a finite lattice obtained

from a distributive lattice by doubling a convex subset. We prove that every congruence

lattice of a finite algebra isomorphic to L is hereditary.

1. Introduction

If L is the congruence lattice of a finite algebra A and every 0-1 sublattice of L

is also the congruence lattice of an algebra with the same universe as A, then L is

called a hereditary congruence lattice. Furthermore, if every 0-1 sublattice of Ln

is the congruence lattice of an algebra on An for every positive integer n, then L

is a power-hereditary congruence lattice. These concepts were introduced in [5] by

Hegedűs and Pálfy. In that manuscript a complete characterization is given of all

Abelian prime power order groups whose congruence lattices are (power-)hereditary.

In [8] the author proves that every congruence lattice representation of N5 is

power-hereditary. The lattice N5 can be obtained from the four element boolean

algebra by doubling one of the atoms. We give a partial extension of the result of [8]

in this manuscript by proving that any congruence lattice representation of a finite

lattice obtained by doubling a convex subset of a distributive lattice is hereditary.

We do not know if “hereditary” here can be replaced by “power-hereditary.”

Lemmas 4.4 and 4.5 of [5] can be interpreted as saying that whether or not a

congruence lattice is (power-)hereditary is a matter of whether or not certain first

order defined operations on the congruence lattice can be interpolated with lattice

terms and whether this interpolation is local or global. We prove that if L is the

congruence lattice of a finite algebra and δ ∈ ConL with L/δ distributive, then

every one of these operations can be interpolated by a lattice term globally modulo

δ. As a result, every sublattice of L which is constructed in a regular way from

δ classes is a congruence lattice. These are the “almost distributive” sublattices
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referenced in the title. This is a generalization of Theorem 3.2 of [8] which says

that every subdirect product of a distributive lattice and a congruence lattice is

again a congruence lattice.

2. Preliminaries

If α is a binary relation on a set A and β is a binary relation on a set B, then the

relation 〈α, β〉 is a binary relation on A × B defined so that 〈a1, b1〉〈α, β〉〈a2, b2〉 if

and only if a1αa2 and b1βb2. If L is a lattice of equivalence relations on a set A and

M is a lattice of equivalence relations on a set B, then L × M is the lattice of all

equivalence relations on A × B of the form 〈α, β〉 where α ∈ L and β ∈ M. These

definitions extend naturally to direct powers Ln of lattices of equivalence relations.

If L is the congruence lattice of a finite algebra A and every 0-1 sublattice of L is

also the congruence lattice of an algebra with the same universe as A, then L is

called a hereditary congruence lattice. Furthermore, if every 0-1 sublattice of Ln is

the congruence lattice of an algebra on An for all positive integers n, then L is a

power-hereditary congruence lattice.

By a representation or a congruence representation of a finite lattice L we will

mean the congruence lattice ConA of a finite algebra such that ConA ∼= L. If ConA

is a representation of L and ConA is a (power-)hereditary congruence lattice, then

we will say that ConA is a (power-)hereditary representation.

A primitive positive formula is a formula of the form ∃ ∧ (atomic). If Φ is a

primitive positive formula employing binary relation symbols r1, . . . , rn and if Φ

has two free variables, then Φ naturally induces an operation on the set of binary

relations of any set. If θ1, . . . , θn are binary relations on a set A, then we will use

Φ(θ1, . . . , θn) to represent the binary relation on A defined by interpreting each ri

in Φ as θi. The operation 〈θ1, . . . , θn〉 7→ Φ(θ1, . . . , θn) is order preserving, and

when it is applied to products of relations can be applied coordinate-wise.

In [9] the author proves that the set of all representable finite lattices is closed

under certain lattice theoretic operations. The main tool exploited there is the

following lemma, which follows from the fact that a set of relations on a finite set

is the set of all relations compatible with an algebra on the set if and only if the

relations are closed under primitive positive definitions [1, 6].

Lemma 2.1 ([9, Corollary 2.2]). Suppose L is a 0-1 lattice of equivalence relations

on a finite set A. There is an algebra A on A with ConA = L if and only if

every equivalence relation on A which can be defined from L by a primitive positive

formula is already in L.

Suppose also that G is a finite directed graph with vertices labelled x0, . . . , xm

and edges labelled r1, . . . , rn. To indicate that there is an edge from xi to xk in G
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labelled by rj , we write xi

rj

→ yk. Let ΦG be the primitive positive formula

∃x2, . . . , xm

∧

xi

rj
→yk

rj(xi, xk).

If rA
1 , . . . , rA

n are binary relations on a finite set A, then in the language of [12] the

relation ΦG(rA
1 , . . . , rA

n ) is called the graphical composition of r1, . . . , rn associated

with the labelling of each ri edge in G by rA
i . Every graphical composition is a

primitive positive definition.

Suppose that Φ is a primitive positive formula using binary relation symbols

r1, . . . , rn which has exactly two free variables. Let x0, . . . , xm be the variables

in Φ. By the graph of Φ(r1, . . . , rn) we will mean the directed graph GΦ with

vertices {x0, . . . , xn} so that for each occurrence of ri(xj , xk) in Φ, there is an edge

in G labelled by ri extending from xj to xk. The maps Φ → GΦ and G → ΦG

give a natural one-to-one correspondence between primitive positive formulas using

binary relations symbols with two free variables and graphical compositions. In [12],

it is proven in Theorem 2.6 that a lattice of equivalence relations on a finite set is a

congruence lattice if and only if that lattice is closed under graphical compositions

which yield equivalence relations. This is equivalent to our Lemma 2.1.

In the environment of binary relations, primitive positive definitions and graph-

ical compositions are essentially one and the same. There will be times in this

manuscript when the notions inherent in graphical compositions (paths, connect-

edness, etc.) will make it easier to visualize our arguments. Most of the time

however, the actual structure of the associated graph beyond connectedness will

not matter. In these instances, the generic notation of primitive positive formulas

is adequate. In a more general setting, primitive positive formulas do have the ad-

vantage that they can be extended naturally to working with relations of any rank

(as in [11]) and even to working with clones (as in [10]). These extensions will not

be needed here, where we are dealing with equivalence relations. We will assume

from here on that every primitive positive formula only contains binary relation

symbols and has exactly two free variables. A primitive positive formula Φ will be

called connected if the corresponding graph is connected. The proof of Lemma 3.1

of [9] establishes:

Lemma 2.2. Suppose that α < β are equivalence relations on a finite set A and

that Φ(r1, . . . , rn) is a connected primitive positive formula. If R1, . . . , Rn ∈ {α, β}

then Φ(R1, . . . , Rn) ∈ {α, β}. Moreover, Φ(R1, . . . , Rn) = α if and only if there is

a path between the free variables in the graph of Φ(R1, . . . , Rn) labelled by α.

Suppose that r1, . . . , rn are congruences on a finite algebra A and that Φ is

a primitive positive formula so that r = Φ(r1, . . . , rn) is an equivalence relation.

If ConA is hereditary, then r must be in the sublattice of ConA generated by
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r1, . . . , rn. This means that there is a lattice term T so that r = T (r1, . . . , rn). On

the other hand, if such a term always exists, then ConA must be hereditary.

Lemma 2.3. The congruence lattice of a finite algebra A is hereditary if and

only if for every primitive positive formula Φ(r1, . . . , rn) and for all R1, . . . , Rn ∈

ConA if Φ(R1, . . . , Rn) is an equivalence relation, there is a lattice term T so that

T (R1, . . . , Rn) = Φ(R1, . . . , Rn).

Hegedűs and Pálfy argue that a congruence lattice is power-hereditary if and

only if primitive positive definitions can be interpolated globally by lattice terms.

Their manuscript uses the notion of graphical composition. We translate their

result here into the language of primitive positive formulas.

Lemma 2.4 (See [5, Lemma 4.5]). The congruence lattice of a finite algebra A

is power-hereditary if and only if for every primitive positive formula Φ(r1, . . . , rn)

there is a lattice term T so that if R1, . . . , Rn ∈ ConA and Φ(R1, . . . , Rn) is an

equivalence relation, then T (R1, . . . , Rn) = Φ(R1, . . . , Rn).

Suppose that A and B are finite algebras and f : ConA → ConB is any func-

tion. We will say that f preserves connected primitive positive definitions if

whenever Φ(x1, . . . , xn) is a connected primitive positive formula and r1, . . . , rn ∈

ConA so that Φ(r1, . . . , rn) and Φ(f(r1), . . . , f(rn)) are equivalence relations, then

f(Φ(r1, . . . , rn)) = Φ(f(r1), . . . , f(rn)).

Suppose that Φ(r1, . . . , rk) is a primitive positive formula. It will be useful

to have a primitive positive formula which will always give an equivalence relation

when evaluated with equivalence relations on a given set and which will agree with Φ

wherever Φ already yields an equivalence relation on that set. Assume that the free

variables in Φ are x0 and x1. By R(x0, x1) we will mean the statement that the

ordered pair 〈x0, x1〉 is in the relation Φ(r1, . . . , rk). Note that R(x0, x1) is (equiv-

alent to) a primitive positive formula which uses the relation symbols r1, . . . , rk.

By Φ
n

we will mean the primitive positive formula with relation symbols r1, . . . , rk

defined so that 〈a, b〉 ∈ Φ
n
(r1, . . . , rk) if and only if

∃y0, . . . , yn+1

( n
∧

i=0

R(yi, yi+1) ∧ R(yi+1, yi)
)

∧ [(y0 = a) ∧ (yn+1 = b)]

If r1, . . . , rk are equivalence relations on a set with no more then n elements, then

Φ
n
(r1, . . . , rk) is the transitive closure of the largest symmetric relation contained

in Φ(r1, . . . , rk). It is easily seen to be reflexive. To see that a particular x is related

to itself via this relation, one can take all of the existentially quantified variables

to be equal to x (this works since each ri is reflexive). Thus Φ
n
(r1, . . . , rk) is

an equivalence relation. Moreover, if Φ(r1, . . . , rk) is an equivalence relation then

the largest symmetric relation contained in Φ(r1, . . . , rk) is all of Φ(r1, . . . , rk), so

Φ
n
(r1, . . . , rk) = Φ(r1, . . . , rk).
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3. Homomorphisms into distributive lattices

We show that any homomorphism from any congruence lattice into a distributive

congruence lattice preserves connected primitive positive definitions. We write 2

for the two element lattice. Note that Con2 ∼= 2.

Lemma 3.1. Suppose that A is a finite algebra and f : ConA → Con2 is a surjec-

tive homomorphism. Then f preserves connected primitive positive definitions.

Proof. There are elements a, b ∈ ConA so that

f(x) =

{

0 x ≤ a,

1 x ≥ b.

Suppose that Φ(x1, . . . , xn) is a connected primitive positive definition and that

r1, . . . , rn are congruences on A with Φ(r1, . . . , rn) ∈ ConA. We will show that

f(Φ(r1, . . . , rn)) = Φ(f(r1), . . . , f(rn)).

The forward inclusion is always true. We prove the reverse. Suppose first that

Φ(f(r1), . . . , f(rn)) = 0. Then by Lemma 2.2 there is a path between the free

variables in the graph of Φ(f(r1), . . . , f(rn)) labelled by 0. This means that there

is a path between the free variables in the graph of Φ(r1, . . . , rn) labelled by relations

below a. But then

Φ(r1, . . . , rn) ≤ a and f(Φ(r1, . . . , rn)) = 0 = Φ(f(r1), . . . , f(rn)).

Suppose now that Φ(f(r1), . . . , f(rn)) = 1. For each i, let r′i = b if ri ≥ b and let

r′i = 0 otherwise. Since Φ(f(r1), . . . , f(rn)) = 1, by Lemma 2.2 there is no path

between the free variables in the graph of Φ(f(r1), . . . , f(rn)) labelled by 0. This

means that in the graph of Φ(r′1, . . . , r
′

n) there is no path between the free variables

labelled by 0. By 2.2, Φ(r′1, . . . , r
′

n) = b. But then Φ(r1, . . . , rn) ≥ Φ(r′1, . . . , r
′

n) = b

and f(Φ(r1, . . . , rn)) = 1 = Φ(f(r1), . . . , f(rn)). ¤

This extends easily to homomorphisms into any distributive congruence lattice.

Corollary 3.2. Suppose that A and B are finite algebras with ConB distribu-

tive. Any homomorphism from ConA to ConB must preserve connected primitive

positive definitions.

Proof. Suppose that Φ is a connected primitive positive formula and that r1, . . . , rn

are congruences on A with Φ(r1, . . . , rn) and Φ(f(r1), . . . , f(rn)) equivalence rela-

tions. Let a = f(Φ(r1, . . . , rn)) and b = Φ(f(r1), . . . , f(rn)). If a 6= b, then

there is a homomorphism g : ConB → Con2 with g(a) 6= g(b). Now, by the pre-

vious lemma, g(b) = g(Φ(f(r1), . . . , f(rn))) = Φ(gf(r1), . . . , gf(rn)). But then
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gf : ConA → Con2 is a surjective homomorphism with

gf(Φ(r1, . . . , rn) = g(a) 6= g(b) = Φ(gf(r1), . . . , gf(rn))

contrary to the previous lemma. ¤

4. δL-convexity

If L is a lattice and {αi : i ∈ I} is a family of congruences on L so that L/αi is

distributive for all i, then L/(∩{αi : i ∈ I}) is also distributive. This allows us to

make the following definition.

Definition 4.1. For any lattice L, let δL be the least congruence on L so that

L/δL is distributive.

The following two lemmas are not hard to prove.

Lemma 4.2. Suppose that L is a lattice and α ∈ ConL. Then L/α is distributive

if and only if δL ≤ α.

Lemma 4.3. Suppose that L is a lattice. Then

δL =
⋂

{α ∈ ConL : |L/α| = 2}

(where the intersection over the empty set is taken to be the universal relation).

We first prove that all primitive positive formulas can be interpolated by lattice

terms modulo δL.

Theorem 4.4. Let A be a finite algebra and Φ a connected primitive positive

formula. There is a lattice term T so that for all r1, . . . , rn ∈ ConA, if Φ(r1, . . . , rn)

is an equivalence relation, then

Φ(r1, . . . , rn)δConAT (r1, . . . , rn).

Proof. We will write δ for δConA. Since (ConA)/δ is distributive, we can find a

finite algebra B with ConB ∼= (ConA)/δ. Since ConB is distributive, it is power-

hereditary. (Every finite distributive lattice is the congruence lattice of a finite

algebra, and every 0-1 distributive lattice of equivalence relations on a finite set

is a congruence lattice by [7], so every distributive congruence lattice is power-

hereditary). Let m be the larger of |A| and |B|. By Lemma 2.4, there is a lattice

term T which is equal to Φ
m

on ConB. Let r1, . . . , rn ∈ ConA and suppose that

Φ(r1, . . . , rn) is an equivalence relation. Let f : ConA → ConB be a surjective
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homomorphism with ker f = δ. Note that by Lemma 3.2, f preserves Φ. Then

f(Φ(r1, . . . , rn)) = f(Φ
m

(r1, . . . , rn))

= Φ
m

(f(r1), . . . , r(rn))

= T (f(r1), . . . , r(rn))

= f(T (r1, . . . , rn)).

Hence we have Φ(r1, . . . , rn)δT (r1, . . . , rn). ¤

The fact that we can interpolate primitive positive formulas with lattice terms

modulo δ implies that sublattices of a congruence lattice which are built from δ

classes in a regular way should be closed under primitive positive definition.

Definition 4.5. Suppose that M is a sublattice of a lattice L and α ∈ ConL. M

is α-convex if for all x, y, z ∈ L if x, z ∈ M, xαz and x < y < z, then y ∈ M.

Theorem 4.6. Suppose L is the congruence lattice of a finite algebra A. Every

δL-convex 0-1 sublattice of L is the congruence lattice of an algebra with the same

universe as A.

Proof. We will prove this statement by induction on n:

Φ(n): Suppose that N is an n element lattice of equivalence relations

on A and that N is closed under connected primitive positive definitions

which yield equivalence relations. Then every δN convex sublattice of

N is also closed under such primitive positive definitions.

This will be enough to establish the theorem. First, Φ(1) and Φ(2) are trivially

true. Assume that |L| = n and that Φ(m) is true for all 2 ≤ m < n. Let f1, . . . , fk

be all surjective homomorphisms from L to Con2. Define F : L → (Con2)k by

F (x) = 〈f1(x), . . . , fk(x)〉. From 3.2 and 4.3, we know that F preserves primitive

positive definitions yielding equivalence relations and that kerF = δL. From here

on, write δ for δL.

Now suppose that M is a δ-convex sublattice of L. Let Φ be a connected primitive

positive formula, and let r1, . . . , rn ∈ M so that r = Φ(r1, . . . , rn) is an equivalence

relation. Since L is a congruence lattice and r is defined from relations in L using

a primitive postive formula, we know that r ∈ L. We must prove that r ∈ M. Let

q be the maximum of |A| and 2k and replace Φ with Φ
q
. This does not change

the value of r. Since F (M) is distributive, we know that F (M) is closed under

connected primitive positive definitions. (The lattice obtained by adding 0 and 1

to F (M) is closed under primitive positive definitions. As an interval in this lattice,

F (M) is closed under connected primitive positive definitions.) Therefore,

F (r) = F (Φ(r1, . . . , rn)) = Φ(F (r1), . . . , F (rn)) ∈ F (M).
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This means that there is some element of M which is δ related to r. Let r be the

largest such element and r be the smallest.

Case 1: Assume first that r 6= 0A and r 6= 1A. Notice then that the intervals

[0, r] and [r, 1] as sublattices of L are closed under connected primitive positive

definitions and are strictly smaller than L. Now let s = Φ(r1 ∧ r, . . . , rn ∧ r) and

t = Φ(r1 ∨ r, . . . , rn ∨ r). Then, s ≤ r ≤ t. We show that s, t ∈ M. Let N be

the interval [0, r] (in L) as a lattice. Then M ∩ N is a δN-convex sublattice of N

(since δN ⊆ (δL ∩ N2)). By induction, then, we know that M ∩ N is closed under

connected primitive positive definitions. Hence s ∈ M∩N ⊆ M. Similarly, t ∈ M.

We will show that s, t ∈ r/δ. By δ-convexity, this will imply that r ∈ M.

Notice that

F (s) = F (Φ(r1 ∧ r, . . . , rn ∧ r))

= Φ(F (r1) ∧ F (r), . . . , F (rn) ∧ F (r))

= Φ(F (r1) ∧ F (r), . . . , F (rn) ∧ F (r)).

However, since F (M) is distributive, the lattice of equivalence relations on 2k ob-

tained by adding the identity and universal relations (if necessary) is a power-

hereditary congruence lattice, so by 2.4 there is a lattice term T so that this con-

gruence lattice satisfies T (x1, . . . , xn) = Φ(x1, . . . , xn). Then we have

F (s) = Φ(F (r1) ∧ F (r), . . . , F (rn) ∧ F (r))

= T (F (r1) ∧ F (r), . . . , F (rn) ∧ F (r))

= T (F (r1), . . . , F (rn)) ∧ F (r)

= Φ(F (r1), . . . , F (rn)) ∧ F (r)

= F (Φ(r1, . . . , rn)) ∧ F (r)

= F (r) ∧ F (r)

= F (r).

The third equality follows from distributivity in F (M). We note that here (along

with the similar steps in following cases) is where the distributivity of L/δ is es-

sential. We can establish similarly that F (t) = F (r). This means that s, t ∈ r/δ.

Since s ≤ r ≤ t and s, t ∈ M, δ-convexity now implies that r ∈ M.

Case 2: Suppose now that r = 0A and r = 1A. Then δ-convexity implies that

M = L, so r ∈ M.

Case 3: Suppose that r 6= 0A but r = 1A. We have two subcases: either 1A is

join irreducible in M or it is not.

Subcase 3.1: Suppose that 1A is join irreducible in M. Let m be the unique

subcover of 1A in M. If every path in the graph of Φ(r1, . . . , rn) between the free

variables has an edge labeled by 1A, then r = Φ(r1, . . . , rn) = 1A = r ∈ M. Assume
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this is not the case. Then we can remove from Φ(r1, . . . , rn) any ri which happens

to equal 1A without changing the value of Φ(r1, . . . , rn). This means that each ri

can be assumed to be no greater than m. By applying the induction hypothesis to

the interval [0A,m] (in L), we can conclude that r ∈ M ∩ [0A,m] ⊆ M.

Subcase 3.2: Suppose that a1, . . . , am ∈ M with a1 ∨ · · · ∨ am = 1A so that no

ai is equal to 1. For each i = 1, . . . ,m let ti = Φ(r1 ∧ ai, . . . , rn ∧ ai). Again by

induction, we know that each ti ∈ M∩ [0A, ai] ⊆ M. We also know that each ti ≤ r

so that the join t = t1 ∨ · · · ∨ tm is also below by r and is in M. As in Case 1:

F (t) = F (
m
∨

i=1

Φ(r1 ∧ ai, . . . , rn ∧ ai))

=
m
∨

i=1

[Φ(F (r1) ∧ F (ai), . . . , F (rn) ∧ F (ai))]

=
m
∨

i=1

[Φ(F (r1), . . . , F (rn)) ∧ F (ai)]

=
m
∨

i=1

[F (Φ(r1, . . . , rn)) ∧ F (ai)]

=
m
∨

i=1

[F (r) ∧ F (ai)]

= F (r) ∧
m
∨

i=1

F (ai)

= F (r) ∧ F (
m
∨

i=1

ai)

= F (r) ∧ 1A

= F (r).

Thus we have tδrδr = 1A and t ≤ r ≤ 1A. Since t, 1A ∈ M we have r ∈ M by δ-

convexity.

Case 4: Suppose now that r = 0A and that r 6= 1A. There are again two cases.

Either 0A is meet irreducible in M or it is not.

Subcase 4.1: Suppose that 0A is meet irreducible in M. Let m be the unique

cover of 0A in M. If there is a path in the graph of Φ(r1, . . . , rn) between the free

variables labeled by 0A, then r = Φ(r1, . . . , rn) = 0A ∈ M. Assume that there

is no such path. By identifying variables, we can remove from Φ(r1, . . . , rn) all

occurrences of 0A without changing the value of Φ(r1, . . . , rn). This means that

every ri can be assumed to be greater than or equal to m. By applying induction

to the interval [m, 1A], we can conclude that r ∈ M ∩ [m, 1A] ⊆ M.

Subcase 4.2: Suppose that 0A is not meet irreducible in M. The argument for

this case is dual to the argument in Subcase 3.1.
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We now know by induction that every δ-convex 0-1 sublattice of ConA is closed

under connected primitive positive definitions. This implies that such a sublattice is

closed under all primitive positive definitions yielding equivalence relations. To see

this, suppose that M is a 0-1 sublattice of ConA closed under connected primitive

positive definitions, that Φ is a primitive positive formula, and that r1, . . . , rn ∈ M

with r = Φ(r1, . . . , rn) an equivalence relation. If the free variables in Φ(r1, . . . , rn)

are not in the same component of the graph of Φ(r1, . . . , rn), then r = 1A ∈ M. If

the free variables in Φ(r1, . . . , rn) are in the same component of this graph, then

let Φ′ be the primitive positive formula corresponding to the graph which is the

component of the graph of Φ(r1, . . . , rn) containing the free variables. Then Φ′ is

connected and r = Φ′(r1, . . . , rn) ∈ M (that is, r is completely determined by the

connected component of the graph containing the free variables). ¤

Theorem 3.2 of [8] says that if D = ConA is distributive and M = ConB, then

every subdirect product of D and M is a congruence lattice on A × B. This is a

corollary of Theorem 4.6. Let L be a subdirect product of D and M. Let η be the

kernel of the projection of D×M onto D. L is η-convex, and δD×M ≤ η. Then L

is δD×M-convex, and Theorem 4.6 applies.

If every equivalence class of δL has at most two elements, then every sublattice

of L is δL-convex, so Theorem 4.6 gives:

Corollary 4.7. Suppose L is the congruence lattice of a finite algebra and that every

δL equivalence class has at most two elements. Then L is a hereditary congruence

lattice.

A natural application of Corollary 4.7 is to lattices obtained from distributive

lattices by doublings. Alan Day’s doubling construction for intervals in lattices

was introduced in [2] to give a nonconstructive solution to the word problem for

lattices. The construction was generalized to families of convex sets (rather than

just intervals) in [4]. We are concerned only with the doubling of convex sets.

Suppose that L is a lattice and that C ⊂ L is a convex subset. We define a lattice

L[C] in the following way. The universe of L[C] is (L − C) ∪ (C × 2). For any

x, y ∈ L[C], we will define x ≤ y if one of these holds:

(1) x, y ∈ L − C with x ≤ y in L.

(2) x = 〈a, i〉, y ∈ L − C, and a ≤ y in L.

(3) x ∈ L − C, y = 〈b, i〉, and x ≤ b in L.

(4) x = 〈a, i〉 and y = 〈b, j〉 with a ≤ b and i ≤ j.

It is not difficult to prove that ≤ is a lattice order on L[C] and that the function

π : L[C] → L given by π(x) = x for x ∈ L − C and π(〈x, i〉) = x for x ∈ C is a

surjective lattice homomorphism. For any x ∈ L[C], if x ∈ L − C, then x/ ker π

has only one element. Otherwise, x/ ker π has two elements. (This statement does
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not apply to the generalized doubling construction in [4].) Corollary 4.7 gives the

following theorem.

Theorem 4.8. Suppose L is a finite lattice obtained from a distributive lattice by

doubling a convex set. Every congruence lattice representation of L is hereditary.

5. Problems

There are several natural questions to ask in light of Corollary 4.7 and Theo-

rem 4.8. Most of them are specific instances of this general question:

Problem 5.1. Which finite lattices L have the property that every representation

of L as the congruence lattice of a finite algebra is (power-)hereditary?

Let H and PH be the classes of all finite lattices L so that every representation

of L as the congruence lattice of a finite algebra is hereditary or power-hereditary.

In Corollary 4.7, each equivalence class of δL is either a one or two element lattice.

Could these be replaced with arbitrary distributive lattices? Let DIST /DIST be

the class of all finite lattices L which have congruences δ so that L/δ is distributive

and every δ-class is a distributive lattice.

Problem 5.2. Which lattices in DIST /DIST are in H (or PH)?

For that matter:

Problem 5.3. Describe the lattices in DIST /DIST .

Problem 5.4. Can the word “hereditary” in 4.6, 4.7, or 4.8 be replaced with

“power-hereditary?”

A finite lattice L is upper (lower) bounded if there is a surjective homomorphism

f from a free lattice F onto L so that for every b ∈ L the set f−1(b) has a greatest

(least) element. If L is both upper and lower bounded, then there exists such an f

so that every f−1(b) has both a greatest and least element. In this case, L is called

bounded.

A subset C of a lattice L is an upper pseudo-interval if C is a union of intervals

which share the same top element. A lower pseudo-interval is defined dually. A

lattice L is upper (lower) bounded if it can be obtained from a distributive lattice by

a sequence of doublings of upper (lower) pseudo-intervals. A lattice L is bounded if

and only if L can be obtained from a distributive lattice by a sequence of doublings

of intervals [3]. It is natural to ask in 4.8 if the one doubling can be replaced with

a sequence of doublings. This leads to:

Problem 5.5. Which (upper or lower) bounded lattices are in H (or PH)?
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It would also be interesting to investigate the classes H and PH.

Problem 5.6. Under which of the operations of taking homomorphic images, sub-

lattices, products, or subintervals are H and PH closed?

Finally, we would like to investigate lattices with the extreme opposite charac-

teristics as those in H and PH.

Problem 5.7. Is there a finite lattice L so that no representation of L as the

congruence lattice of a finite algebra is hereditary?
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